Skip to main content

Inventory Optimization Model Parameter Search Speed-Up Through Similarity Reduction

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1221))

Included in the following conference series:

  • 498 Accesses

Abstract

This paper is concerned with finding near optimal parameters for the inventory optimization model on large dataset. It is shown that our proposed method allows for very good model parameter estimation with great reduction in computation time. Model developed in cooperation with K2 atmitec s.r.o. company has four input parameters which must be set before the run. These parameters are estimated through computationally complex simulations by hyperparameter search. Since it is impossible to make grid search of the optimal parameters for all the input time series, it is necessary to approximate the parameters settings. This approximation is done through similarity search and computation of optimal parameters on the most central objects. Additionally, parameter estimation is improved by the clustering of time series and the results are upgraded by the new estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axsäter, S.: Inventory Control (International Series in Operations Research & Management Science). Springer (2015)

    Google Scholar 

  2. Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: pbdMPI: Programming with big data – interface to MPI (2012). R Package, https://cran.r-project.org/package=pbdMPI

  3. Choi, T.M. (ed.): Handbook of EOQ Inventory Problems: Stochastic and Deterministic Models and Applications (International Series in Operations Research & Management Science). Springer (2013)

    Google Scholar 

  4. Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Komorowski, J., Zytkow, J. (eds.) Principles of Data Mining and Knowledge Discovery, pp. 88–100. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44(9), 2231 – 2240 (2011). https://doi.org/10.1016/j.patcog.2010.09.022. http://www.sciencedirect.com/science/article/pii/S003132031000484X. Computer Analysis of Images and Patterns

  6. Kassambara, A., Mundt, F.: factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2017). https://CRAN.R-project.org/package=factoextra. R package version 1.0.5

  7. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster Analysis Basics and Extensions (2018). R package version 2.0.7-1 — For new features, see the ‘Changelog’ file (in the package source)

    Google Scholar 

  8. Martinovič, J., Snášel, V., Dvorský, J., Dráždilová, P.: Search in documents based on topical development. In: Snášel, V., Szczepaniak, P.S., Abraham, A., Kacprzyk, J. (eds.) Advances in Intelligent Web Mastering - 2, pp. 155–166. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Martinovic, T.: Chaos01: 0-1 Test for Chaos (2016). https://CRAN.R-project.org/package=Chaos01. R package version 1.1.0

  10. Martinovič, T., Janurová, K., Slaninová, K., Martinovič, J.: Automated application of inventory optimization. In: Saeed, K., Homenda, W. (eds.) Computer Information Systems and Industrial Management, pp. 230–239. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  11. Martinovič, T., Zitzlsberger, G.: Highly scalable algorithm for computation of recurrence quantitative analysis. J. Supercomput. (2018). https://doi.org/10.1007/s11227-018-2350-5

  12. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007). https://doi.org/10.1016/j.physrep.2006.11.001. http://www.sciencedirect.com/science/article/pii/S0370157306004066

  13. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.R-project.org/

  14. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7. http://www.sciencedirect.com/science/article/pii/0377042787901257

  15. Rousseeuw, P.J., Kaufman, L.: Finding groups in data. Wiley Online Library Hoboken (1990)

    Google Scholar 

  16. Russell, R., Taylor, B.: Operations and Supply Chain Management. Wiley (2016). https://books.google.cz/books?id=sj00DQEACAAJ

  17. Takens, F.: Detecting strange attractors in turbulence, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924. https://doi.org/10.1007/BFb0091924

  18. Webber, C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994). http://jap.physiology.org/content/76/2/965

  19. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2009). http://ggplot2.org

  20. Wickham, H.: tidyverse: Easily Install and Load the ‘Tidyverse’ (2017). https://CRAN.R-project.org/package=tidyverse. R package version 1.2.1

  21. Wickham, H., Francois, R., Henry, L., Müller, K.: dplyr: a Grammar of Data Manipulation (2017). https://CRAN.R-project.org/package=dplyr. R package version 0.7.4

  22. Witt, C.: Clustering Recurrence Plots. Master’s thesis, Humboldt-Universität zu Berlin, Germany (2016)

    Google Scholar 

  23. Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3), 199–203 (1992). https://doi.org/10.1016/0375-9601(92)90426-M. http://www.sciencedirect.com/science/article/pii/037596019290426M

Download references

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project “IT4Innovations excellence in science - LQ1602” and by the “IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project IT4Innovations National Supercomputing Center - LM2015070” and partially supported by the SGC grant No. SP2018/173 “Dynamic systems problems and their implementation on HPC", VŠB - Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Janurová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinovič, T., Janurová, K., Martinovič, J., Slaninová, K. (2021). Inventory Optimization Model Parameter Search Speed-Up Through Similarity Reduction. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-51992-6_9

Download citation

Publish with us

Policies and ethics