Skip to main content

Arbuscular Mycorrhizal Fungi: Potential Plant Protective Agent Against Herbivorous Insect and Its Importance in Sustainable Agriculture

  • Chapter
  • First Online:
Symbiotic Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 60))

Abstract

Wide use of fertilizers and chemicals for food grain production to feed the world population with increasing demand leads to environmental pollution. Alternatively, the use of biological sources such as beneficial microbes to improve crop production as a component of sustainable agriculture production and environmentally friendly. Among them, arbuscular mycorrhizal fungi (AMF) are well-known soil microbe forms a symbiotic association with land plants including agricultural important crops. This beneficial AM fungi improving plant growth, and it also fount to improve resistance capacity of plants against diverse stresses, including herbivorous insect damage through altering the morphological and biochemical traits. In response to herbivore stress, AMF augments plant defense in both constitutive and inducible manner leads to reduce insect damage. AMF induced or primed plant defense mechanisms against herbivorous insect damage have so far underestimated. Therefore, we discuss here an overview of research findings related to AMF induced or priming of immune response in plants against herbivore-induced stress. Acquired mechanisms of plant associated with AMF to protect themselves from pests by altering nutrient availability and physiology. AMF-mediated response of plants to herbivore varied with host plants, AMF species, and degree of colonization, type of pest, and crop management system. With these contexts AMF is could be a good bioprotective agent against pest apart from improving plant growth and this is an integral part of the integrated pest management system for sustainable agriculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya V, Bhargava M (2008) Morphological basis of resistance in cotton (Gossypium hirsutum) against whitefly (Bemisia tabaci). Indian J Agr Sci 78:818–820

    Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients: physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 25–55

    Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078

    Article  CAS  Google Scholar 

  • Andrade S, Malik S, Sawaya A, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880

    Article  CAS  Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Dandekar AM (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203

    Article  CAS  Google Scholar 

  • Arimura GI, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111

    Article  CAS  Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161

    Article  CAS  Google Scholar 

  • Babenko L, Skaterna T, Kosakivska I (2017) Lipoxygenase activity in ontogenesis of ferns Salvinia natans and Polystichum aculeatum. Ukr Biochem J 89:5–12

    Google Scholar 

  • Balestrini R, Salvioli A, Dal Molin A, Novero M, Gabelli G, Paparelli E, Bonfante P (2017) Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. Mycorrhiza 27:417–430

    Article  CAS  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  Google Scholar 

  • Bhonwon A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38

    Article  CAS  Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542

    Article  Google Scholar 

  • Borowicz VA (2013) The impact of arbuscular mycorrhizal fungi on plant growth following herbivory: A search for pattern. Acta Oecol 52:1–9

    Google Scholar 

  • Böttger A, Vothknecht U, Bolle C, Wolf A (2018) Terpenes and Terpenoids. In: Lessons on caffeine, Cannabis & Co. Springer, New York, pp 153–170

    Chapter  Google Scholar 

  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555

    Article  CAS  Google Scholar 

  • Cabral C, Wollenweber B, António C, Rodrigues AM, Ravnskov S (2018) Aphid infestation in the phyllosphere affects primary metabolic profiles in the arbuscular mycorrhizal hyphosphere. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  • Cameron DD, Neal AL, Wees SC, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  Google Scholar 

  • Cardoso Filho JA, Sobrinho RR, Pascholati SF (2017) Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In: Agriculturally important microbes for sustainable agriculture. Springer, New York, pp 129–164

    Chapter  Google Scholar 

  • Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611–625

    Article  CAS  Google Scholar 

  • Chaudhary A, Bala K, Thakur S, Kamboj R, Dumra N (2018a) Plant defenses against herbivorous insects: a review. IJCS 6:681–688

    Google Scholar 

  • Chaudhary DK, Dahal RH, Oren A, Kim J (2018b) Proposal of Nemorincola gen. nov. to replace the illegitimate prokaryotic genus name Nemorella (2018). Int J Syst Evol Microbiol 68:1319–1320

    Article  Google Scholar 

  • Chen X, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  Google Scholar 

  • Chen H, Stout MJ, Qian Q, Chen F (2012) Genetic, molecular and genomic basis of rice defense against insects. Crit Rev Plant Sci 31:74–91

    Article  CAS  Google Scholar 

  • Chen D, Zheng S, Shan Y, Taube F, Bai Y (2013) Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Funct Ecol 27:273–281

    Article  Google Scholar 

  • Clavijo Mccormick A, Gershenzon J, Unsicker SB (2014) Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions. Plant Cell Environ 37:1836–1844

    Article  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Pozo MJ (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  Google Scholar 

  • da Trindade R, Almeida L, Xavier L, Lins AL, Andrade EH, Maia JG, da Silva JK (2019) Arbuscular mycorrhizal fungi colonization promotes changes in the volatile compounds and enzymatic activity of lipoxygenase and phenylalanine ammonia lyase in Piper nigrum L.‘Bragantina’. Plant 8:442

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, Turlings TC (2020) Spodoptera frugiperda caterpillars suppress herbivore-induced volatile emissions in maize. J Chem Ecol 46:344–360

    Article  CAS  Google Scholar 

  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:1–10

    Article  CAS  Google Scholar 

  • Farag MA, Pare PW (2002) C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    Article  CAS  Google Scholar 

  • Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Strack D (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Plant 216:148–154

    Article  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  Google Scholar 

  • Formenti L, Rasmann S (2019) Mycorrhizal fungi enhance resistance to herbivores in tomato plants with reduced jasmonic acid production. Agron 9:131

    Article  CAS  Google Scholar 

  • Frew A (2019) Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C3 and C4 crop plants. Soil Biol Biochem 135:248–250

    Article  CAS  Google Scholar 

  • Frey M, Stettner C, Paré PW, Schmelz EA, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci 97:14801–14806

    Article  CAS  Google Scholar 

  • Gange AC (2001) Species-specific responses of a root-and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol 150:611–618

    Article  Google Scholar 

  • Gange A, West H (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  Google Scholar 

  • Gange AC, Bower E, Brown VK (1999) Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120:123–131

    Article  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  • Gange AC, Dey S, Currie AF, Sutton BC (2007) Site-and species-specific differences in endophyte occurrence in two herbaceous plants. J Ecol 95:614–622

    Article  Google Scholar 

  • Gershenzon J (2017) The cost of plant chemical defense against herbivory: a biochemical perspective. In: Insect-plant interactions. CRC Press, Boca Raton, FL, pp 105–176

    Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  Google Scholar 

  • Gourlay G, Constabel CP (2019) Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. Tree Physiol 39:345–355

    Article  CAS  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Article  Google Scholar 

  • Gupta MM, Chourasiya D, Sharma MP (2019) Diversity of arbuscular mycorrhizal fungi in relation to sustainable plant production systems. In: Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, New York, pp 167–186

    Chapter  Google Scholar 

  • Habib H, Fazili KM (2007) Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev 2:68–85

    Google Scholar 

  • Hahn PG, Agrawal AA, Sussman KI, Maron JL (2019) Population variation, environmental gradients, and the evolutionary ecology of plant defense against herbivory. Am Nat 193:20–34

    Article  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56(1):161–180

    Google Scholar 

  • Harrison M, Dixon R (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643–654

    Article  CAS  Google Scholar 

  • Hart MM, Antunes PM, Chaudhary VB, Abbott LK (2018) Fungal inoculants in the field: is the reward greater than the risk? Funct Ecol 32:126–135

    Article  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  Google Scholar 

  • Hunter MD (2002) A breath of fresh air: beyond laboratory studies of plant volatile–natural enemy interactions. Agric For Entomol 4:81–86

    Article  Google Scholar 

  • Irmisch S, Clavijo McCormick A, Günther J, Schmidt A, Boeckler GA, Gershenzon J, Köllner TG (2014) Herbivore-induced poplar cytochrome P450 enzymes of the CYP 71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J 80:1095–1107

    Article  CAS  Google Scholar 

  • Jih PJ, Chen YC, Jeng ST (2003) Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiol 132:381–389

    Article  CAS  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    Article  CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  Google Scholar 

  • Kapoor R, Anand G, Gupta P, Mandal S (2017) Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochem Rev 16:677–692

    Article  CAS  Google Scholar 

  • Kappers IF, Aharoni A, Van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  CAS  Google Scholar 

  • Karban R (2020) The ecology and evolution of induced responses to herbivory and how plants perceive risk. Ecol Entomol 45:1–9

    Article  Google Scholar 

  • Karban RB, Baldwin I (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Keeping MG, Kvedaras OL (2008) Silicon as a plant defence against insect herbivory: response to Massey, Ennos and Hartley. J Anim Ecol 77:631–633

    Article  Google Scholar 

  • Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357

    Article  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  Google Scholar 

  • Kim J, Felton GW (2013) Priming of antiherbivore defensive responses in plants. Insect Sci 20:273–285

    Article  CAS  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  Google Scholar 

  • Korpita T, Gómez S, Orians CM (2014) Cues from a specialist herbivore increase tolerance to defoliation in tomato. Funct Ecol 28:395–401

    Article  Google Scholar 

  • Kovalikova Z, Kubes J, Skalicky M, Kuchtickova N, Maskova L, Tuma J, Hejnak V (2019) Changes in content of polyphenols and ascorbic acid in leaves of white cabbage after pest infestation. Molecules 24:2622

    Article  CAS  Google Scholar 

  • Krips O, Willems P, Gols R, Posthumus M, Dicke M (1999) The response of Phytoseiulus persimilis to spider mite-induced volatiles from gerbera: influence of starvation and experience. J Chem Ecol 25:2623–2641

    Article  CAS  Google Scholar 

  • Kumar VV (2018) Biofertilizers and biopesticides in sustainable agriculture. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 377–398

    Chapter  Google Scholar 

  • Kumar D, Priyanka P, Yadav P, Yadav A, Yadav K (2019) Arbuscular mycorrhizal fungi-mediated mycoremediation of saline soil: current knowledge and future prospects recent advancement in white biotechnology through Fungi. Springer, New York, pp 319–348

    Google Scholar 

  • Kundu A, Mishra S, Vadassery J (2018) Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta 248:981–997

    Article  CAS  Google Scholar 

  • Lackus ND, Lackner S, Gershenzon J, Unsicker SB, Köllner TG (2018) The occurrence and formation of monoterpenes in herbivore-damaged poplar roots. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Advan Res 661:23–67

    Google Scholar 

  • Li F, Christensen MJ, Gao P, Li Y, Duan T (2018) An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 28:159–169

    Article  Google Scholar 

  • Machado BB, Casanova D, Gonçalves WN, Bruno OM (2013) Partial differential equations and fractal analysis to plant leaf identification. J Phys Conf Ser 410:012066

    Article  Google Scholar 

  • MacLean AM, Bravo A, Harrison MJ (2017) Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29:2319–2335

    Article  CAS  Google Scholar 

  • Manjarrez M, Wallwork M, Smith SE, Smith FA, Dickson S (2009) Different arbuscular mycorrhizal fungi induce differences in cellular responses and fungal activity in a mycorrhiza-defective mutant of tomato (rmc). Funct Plant Biol 36:86–96

    Article  CAS  Google Scholar 

  • Markkola A, Kuikka K, Rautio P, Härmä E, Roitto M, Tuomi J (2004) Defoliation increases carbon limitation in ectomycorrhizal symbiosis of Betula pubescens. Oecologia 140:234–240

    Article  Google Scholar 

  • Maurya AK, Patel RC, Frost CJ (2020) Acute toxicity of the plant volatile indole depends on herbivore specialization. J Pest Sci 1–11

    Google Scholar 

  • Mazid M, Khan T, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3:232–249

    CAS  Google Scholar 

  • McCall PJ, Turlings TC, Loughrin J, Proveaux AT, Tumlinson JH (1994) Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J Chem Ecol 20:3039–3050

    Article  CAS  Google Scholar 

  • Mehrabadi M, Bandani AR, Saadati F (2010) Inhibition of Sunn pest, Eurygaster integriceps, α-amylases by α-amylase inhibitors (T-αAI) from Triticale. J Insect Sci 10:1

    Article  Google Scholar 

  • Meier AR, Hunter MD (2019) Mycorrhizae alter constitutive and herbivore-induced volatile emissions by milkweeds. J Chem Ecol 45:610–625

    Article  CAS  Google Scholar 

  • Miller R, Miller S, Jastrow J, Rivetta C (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardi. New Phytol 155(1):149–162

    Article  CAS  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  CAS  Google Scholar 

  • Nishida T, Katayama N, Izumi N, Ohgushi T (2010) Arbuscular mycorrhizal fungi species-specifically affect induced plant responses to a spider mite. Popul Ecol 52:507–515

    Article  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332

    Article  Google Scholar 

  • Pineda A, Zheng SJ, Van Loon J, Dicke M (2012) Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biol 14:83–90

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Camenzind T, Cavagnaro TR, Degrune F, Hohmann P, Yang G (2019) Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol 222:1171–1175

    Article  Google Scholar 

  • Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336

    Article  CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42:899–906

    Article  CAS  Google Scholar 

  • Ryalls JM, Moore BD, Riegler M, Bromfield LM, Hall AA, Johnson SN (2017) Climate and atmospheric change impacts on sap-feeding herbivores: a mechanistic explanation based on functional groups of primary metabolites. Funct Ecol 31:161–171

    Article  Google Scholar 

  • Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220:1092–1107

    Article  Google Scholar 

  • Salam JA, Hatha MA, Das N (2017) Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manag 193:394–399

    Article  CAS  Google Scholar 

  • Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D (2012) α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 15:141–183

    Article  Google Scholar 

  • Schausberger P, Peneder S, Jürschik S, Hoffmann D (2012) Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct Ecol 26:441–449

    Article  Google Scholar 

  • Schoenherr AP, Rizzo E, Jackson N, Manosalva P, Gomez SK (2019) Mycorrhiza-induced resistance in potato involves priming of defense responses against cabbage Looper (Noctuidae: Lepidoptera). Environ Entomol 48:370–381

    Article  CAS  Google Scholar 

  • Schultz JC, Appel HM, Ferrieri A, Arnold TM (2013) Flexible resource allocation during plant defense responses. Front Plant Sci 4:324

    Article  Google Scholar 

  • Schuman MC, Palmer-Young EC, Schmidt A, Gershenzon J, Baldwin IT (2014) Ectopic terpene synthase expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors. Plant Physiol 166(2):779–797

    Google Scholar 

  • Seguel A, Barea JM, Cornejo P, Borie F (2015) Role of arbuscular mycorrhizal symbiosis in phosphorus-uptake efficiency and aluminium tolerance in barley growing in acid soils. Crop Pasture Sci 66:696–705

    Article  CAS  Google Scholar 

  • Selvaraj A, Thangavel K, Uthandi S (2020) Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol Res 231:126355

    Article  CAS  Google Scholar 

  • Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  CAS  Google Scholar 

  • Sharma AD, Gill PK, Singh P (2003) RNA isolation from plant tissues rich in polysaccharides. Anal Biochem 314:689–689

    Article  CAS  Google Scholar 

  • Shrivastava G, Ownley BH, Augé RM, Toler H, Dee M, Vu A, Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74

    Article  CAS  Google Scholar 

  • Shu B, Li W, Liu L, Wei Y, Shi S (2016) Effects of girdling on arbuscular mycorrhizal colonization and root hair development of litchi seedlings. Sci Hortic 210:25–33

    Article  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  Google Scholar 

  • Smith S, Read D (2008) Colonization of roots and anatomy of arbuscular mycorrhiza. In: Mycorrhizal symbiosis. Academic Press, London, pp 42–90

    Chapter  Google Scholar 

  • Song YY, Ye M, Li CY, Wang RL, Wei XC, Luo SM, Zeng RS (2013) Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol 39:1036–1044

    Article  CAS  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In: Plant, soil and microbes. Springer, New York, pp 145–168

    Chapter  Google Scholar 

  • Taggar G, Gill R (2012) Preference of whitefly, Bemisia tabaci, towards black gram genotypes: role of morphological leaf characteristics. Phytoparasitica 40:461–474

    Article  Google Scholar 

  • Ton J, D'Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Turlings TC (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  CAS  Google Scholar 

  • Turlings T, Loughrin JH, Mccall PJ, Röse U, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci 92:4169–4174

    Article  CAS  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  Google Scholar 

  • Vincenti S, Mariani M, Alberti JC, Jacopini S, Brunini-Bronzini de Caraffa V, Berti L, Maury J (2019) Biocatalytic synthesis of natural green leaf volatiles using the lipoxygenase metabolic pathway. Catalysts 9:873

    Article  CAS  Google Scholar 

  • Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Guerrieri E (2018) The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Front Plant Sci 9:1480

    Article  Google Scholar 

  • Wang M, Bezemer TM, Van der Putten WH, Biere A (2015) Effects of the timing of herbivory on plant defense induction and insect performance in ribwort plantain (Plantago lanceolata L.) depend on plant mycorrhizal status. J Chem Ecol 41:1006–1017

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  Google Scholar 

  • War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S, Sharma HC (2013) Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera. J Pest Sci 86:399–408

    Article  Google Scholar 

  • Wilkinson S, Weston AK, Marks DJ (2019) Stabilising urea amine nitrogen increases potato tuber yield by increasing chlorophyll content, reducing shoot growth rate and increasing biomass partitioning to roots and tubers. Potato Res 1–23. https://doi.org/10.1007/s11540-019-09436-x

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307

    Article  CAS  Google Scholar 

  • Woods H, Fagan W, Elser J, Harrison J (2004) Allometric and phylogenetic variation in insect phosphorus content. Funct Ecol 18:103–109

    Article  Google Scholar 

  • Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor J, Roberts MR (2012) Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytol 193:770–778

    Article  CAS  Google Scholar 

  • Xing Z, Liu Y, Cai W, Huang X, Wu S, Lei Z (2017) Efficiency of trichome-based plant defense in Phaseolus vulgaris depends on insect behavior, plant ontogeny, and structure. Front Plant Sci 8:2006

    Article  Google Scholar 

  • Yan C, Xie D (2015) Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J 13:1233–1240

    Article  Google Scholar 

  • Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 55:491–503

    Article  CAS  Google Scholar 

  • Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222:543–555

    Article  CAS  Google Scholar 

  • Zhuang X, Fiesselmann A, Zhao N, Chen H, Frey M, Chen F (2012) Biosynthesis and emission of insect herbivory-induced volatile indole in rice. Phytochemistry 73:15–22

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selvaraj, A., Thangavel, K. (2021). Arbuscular Mycorrhizal Fungi: Potential Plant Protective Agent Against Herbivorous Insect and Its Importance in Sustainable Agriculture. In: Shrivastava, N., Mahajan, S., Varma, A. (eds) Symbiotic Soil Microorganisms. Soil Biology, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-030-51916-2_19

Download citation

Publish with us

Policies and ethics