Skip to main content

MDS Mimics Including CHIP, ICUS, and CCUS

  • Chapter
  • First Online:
Diagnosis and Management of Myelodysplastic Syndromes
  • 569 Accesses

Abstract

Myelodysplastic syndromes (MDS) are often challenging to diagnose accurately. Diagnostic criteria for MDS include subjective morphologic interpretations or findings of low specificity. There exist several MDS “mimics” that share findings with MDS but are caused by more benign conditions, other neoplasms, or less well-characterized pre-malignant states. Vitamin and iron deficiencies need to be excluded along with autoimmune conditions, medication effects, toxic exposures, viral infections, and congenital syndromes. We now recognize mutational events common to patients with MDS. However, most somatic events indicative of clonal hematopoiesis are not synonymous with MDS as they are found in other myeloid disorders and clonal cytopenias that fail to meet diagnostic criteria for MDS. Interpretation of molecular findings depends on the clinical context in which they occur as the same somatic mutations can have different clinical implications in different settings. This chapter will highlight common MDS mimics with special attention to potentially pre-malignant states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steensma DP. Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7:310–20.

    Article  PubMed  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg PL, Tuechler H, Schanz J, et al. Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood. 2016;128:2096–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Malcovati L, Hellstrom-Lindberg E, Bowen D, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122:2943–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  6. Malcovati L, Karimi M, Papaemmanuil E, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Font P, Loscertales J, Benavente C, et al. Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification. Ann Hematol. 2013;92:19–24.

    Article  CAS  PubMed  Google Scholar 

  8. Bono E, McLornan D, Travaglino E, et al. Clinical, histopathological and molecular characterization of hypoplastic myelodysplastic syndrome. Leukemia. 2019;33:2495–505.

    Article  CAS  PubMed  Google Scholar 

  9. DeZern AE, Sekeres MA. The challenging world of cytopenias: distinguishing myelodysplastic syndromes from other disorders of marrow failure. Oncologist. 2014;19:735–45.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Servey JT, Reamy BV, Hodge J. Clinical presentations of parvovirus B19 infection. Am Fam Physician. 2007;75:373–6.

    PubMed  Google Scholar 

  11. University of Chicago Hematopoietic Malignancies Cancer Risk T. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood. 2016;128:1800–13.

    Article  CAS  Google Scholar 

  12. DiNardo CD, Bannon SA, Routbort M, et al. Evaluation of patients and families with concern for predispositions to hematologic malignancies within the hereditary hematologic malignancy clinic (HHMC). Clin Lymphoma Myeloma Leuk. 2016;16:417–28.. e2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Churpek JE, Pyrtel K, Kanchi KL, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015;126:2484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chisholm KM, Denton C, Keel S, et al. Bone marrow morphology associated with germline RUNX1 mutations in patients with familial platelet disorder with associated myeloid malignancy. Pediatr Dev Pathol. 2019;22:315–28.

    Article  PubMed  Google Scholar 

  15. Marquez R, Hantel A, Lorenz R, et al. A new family with a germline ANKRD26 mutation and predisposition to myeloid malignancies. Leuk Lymphoma. 2014;55:2945–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yoshimi A, Toya T, Nannya Y, et al. Spectrum of clinical and genetic features of patients with inherited platelet disorder with suspected predisposition to hematological malignancies: a nationwide survey in Japan. Ann Oncol. 2016;27:887–95.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenberg PS, Greene MH, Alter BP. Cancer incidence in persons with Fanconi anemia. Blood. 2003;101:822–6.

    Article  CAS  PubMed  Google Scholar 

  18. Mourad S, Bilodeau M, Roussy M, et al. IDH1 as a cooperating mutation in AML arising in the context of Shwachman-Diamond syndrome. Front Oncol. 2019;9:772.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yamaguchi H, Baerlocher GM, Lansdorp PM, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102:916–8.

    Article  CAS  PubMed  Google Scholar 

  20. Polprasert C, Schulze I, Sekeres MA, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewinsohn M, Brown AL, Weinel LM, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127:1017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sebert M, Passet M, Raimbault A, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134(17):1441–4.

    Article  PubMed  Google Scholar 

  23. Afable MG 2nd, Wlodarski M, Makishima H, et al. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood. 2011;117:6876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nazha A, Seastone D, Radivoyevitch T, et al. Genomic patterns associated with hypoplastic compared to hyperplastic myelodysplastic syndromes. Haematologica. 2015;100:e434–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic mutations and clonal hematopoiesis in aplastic Anemia. N Engl J Med. 2015;373:35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kulasekararaj AG, Jiang J, Smith AE, et al. Somatic mutations identify a sub-group of aplastic anemia patients that progress to myelodysplastic syndrome. Blood. 2014;18:2014–05.

    Google Scholar 

  28. Maciejewski JP, Risitano A, Sloand EM, Nunez O, Young NS. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood. 2002;99:3129–35.

    Article  CAS  PubMed  Google Scholar 

  29. Babushok DV, Olson TS, Bessler M. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:1673.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Babushok DV, Perdigones N, Perin JC, et al. Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia. Cancer Genet. 2015;208:115–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaimoku Y, Takamatsu H, Hosomichi K, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017;129:2908–16.

    Article  CAS  PubMed  Google Scholar 

  32. Katagiri T, Sato-Otsubo A, Kashiwase K, et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011;118:6601–9.

    Article  CAS  PubMed  Google Scholar 

  33. Laurie CC, Laurie CA, Rice K, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44:642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Genovese G, Jaiswal S, Ebert BL, McCarroll SA. Clonal hematopoiesis and blood-cancer risk. N Engl J Med. 2015;372:1071–2.

    Article  CAS  PubMed  Google Scholar 

  38. Kyle RA, Larson DR, Therneau TM, et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N Engl J Med. 2018;378:241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bejar R. CHIP, ICUS, CCUS and other four-letter words. Leukemia. 2017;31:1869–71.

    Article  CAS  PubMed  Google Scholar 

  42. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dorsheimer L, Assmus B, Rasper T, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4:25–33.

    Article  PubMed  Google Scholar 

  44. Sano S, Wang Y, Walsh K. Clonal hematopoiesis and its impact on cardiovascular disease. Circ J. 2018;83:2–11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zink F, Stacey SN, Norddahl GL, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130:742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ Res. 2018;123:335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Svensson EC, Madar A, Campbell CD, et al. Abstract 15111: TET2-driven clonal hematopoiesis predicts enhanced response to canakinumab in the CANTOS Trial: an exploratory analysis. Circulation. 2018;138:A15111–A.

    Google Scholar 

  49. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  50. Basiorka AA, McGraw KL, Eksioglu EA, et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood. 2016;128:2960–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sallman DA, List A. The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood. 2019;133:1039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Desai P, Mencia-Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med. 2018;24:1015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abelson S, Collord G, Ng SWK, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bolton KL, Gillis NK, Coombs CC, et al. Managing clonal hematopoiesis in patients with solid tumors. J Clin Oncol. 2019;37:7–11.

    Article  CAS  PubMed  Google Scholar 

  56. Kahn JD, Miller PG, Silver AJ, et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. 2018;132:1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibson CJ, Lindsley RC, Tchekmedyian V, et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol. 2017;35:1598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Coombs CC, Zehir A, Devlin SM, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017;21:374–82.. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coombs CC, Gillis NK, Tan X, et al. Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays. Clin Cancer Res. 2018;24:5918–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swisher EM, Harrell MI, Norquist BM, et al. Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncol. 2016;2:370–2.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zajkowicz A, Butkiewicz D, Drosik A, Giglok M, Suwinski R, Rusin M. Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients. Br J Cancer. 2015;112:1114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Churpek JE, Marquez R, Neistadt B, et al. Inherited mutations in cancer susceptibility genes are common among survivors of breast cancer who develop therapy-related leukemia. Cancer. 2016;122:304–11.

    Article  CAS  PubMed  Google Scholar 

  63. McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017;17:513–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 2004;104:2263–8.

    Article  CAS  PubMed  Google Scholar 

  65. Valent P, Horny HP, Bennett JM, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res. 2007;31:727–36.

    Article  PubMed  Google Scholar 

  66. Valent P, Bain BJ, Bennett JM, et al. Idiopathic cytopenia of undetermined significance (ICUS) and idiopathic dysplasia of uncertain significance (IDUS), and their distinction from low risk MDS. Leuk Res. 2012;36:1–5.

    PubMed  Google Scholar 

  67. Malcovati L, Cazzola M. The shadowlands of MDS: idiopathic cytopenias of undetermined significance (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP). Hematology Am Soc Hematol Educ Program. 2015;2015:299–307.

    Article  PubMed  Google Scholar 

  68. Cargo CA, Rowbotham N, Evans PA, et al. Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression. Blood. 2015;126:2362–5.

    Article  CAS  PubMed  Google Scholar 

  69. Kwok B, Hall JM, Witte JS, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126:2355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. DeZern AE, Malcovati L, Ebert BL. CHIP, CCUS, and other acronyms: definition, implications, and impact on practice. Am Soc Clin Oncol Educ Book. 2019;39:400–10.

    Article  PubMed  Google Scholar 

  71. Malcovati L, Galli A, Travaglino E, et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood. 2017;129:3371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baer C, Pohlkamp C, Haferlach C, Kern W, Haferlach T. Molecular patterns in cytopenia patients with or without evidence of myeloid neoplasm-a comparison of 756 cases. Leukemia. 2018;32:2295–8.

    Article  CAS  PubMed  Google Scholar 

  73. Steensma DP. How I use molecular genetic tests to evaluate patients who have or may have myelodysplastic syndromes. Blood. 2018;132:1657–63.

    Article  CAS  PubMed  Google Scholar 

  74. Cargo C, Cullen M, Taylor J, et al. The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood. 2019;133:1325–34.

    Article  CAS  PubMed  Google Scholar 

  75. Tanaka TN, Bejar R. MDS overlap disorders and diagnostic boundaries. Blood. 2019;133:1086–95.

    Article  CAS  PubMed  Google Scholar 

  76. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–302.

    Article  CAS  PubMed  Google Scholar 

  77. Pleyer L, Burgstaller S, Stauder R, et al. Azacitidine front-line in 339 patients with myelodysplastic syndromes and acute myeloid leukaemia: comparison of French-American-British and World Health Organization classifications. J Hematol Oncol. 2016;9:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lichtman MA. Does a diagnosis of myelogenous leukemia require 20% marrow myeloblasts, and does <5% marrow myeloblasts represent a remission? The history and ambiguity of arbitrary diagnostic boundaries in the understanding of myelodysplasia. Oncologist. 2013;18:973–80.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lindsley RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Montalban-Bravo G, Kanagal-Shamanna R, Sasaki K, et al. NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019;3:922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Konstandin NP, Pastore F, Herold T, et al. Genetic heterogeneity of cytogenetically normal AML with mutations of CEBPA. Blood Adv. 2018;2:2724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Strickland SA, Shaver AC, Byrne M, et al. Genotypic and clinical heterogeneity within NCCN favorable-risk acute myeloid leukemia. Leuk Res. 2018;65:67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Makishima H, Yoshizato T, Yoshida K, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49:204–12.

    Article  CAS  PubMed  Google Scholar 

  84. Shiozawa Y, Malcovati L, Galli A, et al. Gene expression and risk of leukemic transformation in myelodysplasia. Blood. 2017;130:2642–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Dr. Bejar has received research funding from Celgene and Takeda and served as an advisor to Celgene, Genoptix (NeoGenomics), AbbVie, Daiichi-Sankyo, Forty Seven, and Astex. He is employed by Aptose Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Bejar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bejar, R. (2020). MDS Mimics Including CHIP, ICUS, and CCUS. In: Nazha, A. (eds) Diagnosis and Management of Myelodysplastic Syndromes. Springer, Cham. https://doi.org/10.1007/978-3-030-51878-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51878-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51877-6

  • Online ISBN: 978-3-030-51878-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics