Skip to main content

Computational Tools for Comparing Gene Coexpression Networks

  • Chapter
  • First Online:
Networks in Systems Biology

Part of the book series: Computational Biology ((COBO,volume 32))

  • 854 Accesses

Abstract

The comparison of biological networks is a crucial step to better understanding the underlying mechanisms involved in specific experimental conditions, such as those of health and disease or high and low concentrations of an environmental element. To this end, several tools have been developed to compare whether network structures are “equal” (in some sense) across conditions. Some examples of computational methods include DCGL, EBcoexpress, DiffCorr, CoDiNA, DiffCoEx, coXpress, DINGO, DECODE, dCoxS, GSCA, GSNCA, CoGA, GANOVA, and BioNetStat. We will briefly describe these algorithms and their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos SDS, Takahashi DY, Nakata A, Fujita A (2013) Brief Bioinform 15(6):906. https://doi.org/10.1093/bib/bbt051

  2. Langfelder P, Horvath S (2008) BMC Bioinform 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  Google Scholar 

  3. Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, Steinhauser D, Fernie AR, Willmitzer L, Hannah MA (2011) Plant J 67(5):869. https://doi.org/10.1111/j.1365-313X.2011.04640.x

    Article  Google Scholar 

  4. Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD (2011) Plant, Cell Environ 34(9):1488. https://doi.org/10.1111/j.1365-3040.2011.02347.x

  5. Zhang H, Yin T (2016) Tree Genet Genomes 12(3):61. https://doi.org/10.1007/s11295-016-1016-9

  6. Sun SY, Liu ZP, Zeng T, Wang Y, Chen L (2013) Scientific reports 3:2268. https://doi.org/10.1038/srep02268, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3721080&tool=pmcentrez&rendertype=abstract

  7. Walley AJ, Jacobson P, Falchi M, Bottolo L, Andersson JC, Petretto E (2012) Int J 36(1):137. https://doi.org/10.1038/ijo.2011.22.Differential

    Article  Google Scholar 

  8. Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, Fait A (2013) BMC Plant Biol 13(1):184. https://doi.org/10.1186/1471-2229-13-184, http://dx.plos.org/10.1371/journal.pone.0115581://www.biomedcentral.com/1471-2229/13/184

  9. Fukushima A (2013) Gene 518(1):209. https://doi.org/10.1016/j.gene.2012.11.028

  10. Fisher RA (1915) Biometrika 10(4):507. www.jstor.org/stable/2331838

  11. Liu BH, Yu H, Tu K, Li C, Li YX, Li YY (2010) Bioinformatics 26(20):2637. https://doi.org/10.1093/bioinformatics/btq471

    Article  Google Scholar 

  12. Yu H, Liu BH, Ye ZQ, Li C, Li YX, Li YY (2011) BMC Bioinform 12(1):315. https://doi.org/10.1186/1471-2105-12-315, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3199761&tool=pmcentrez&rendertype=abstract

  13. Dawson JA, Ye S, Kendziorski C (2012) Bioinformatics 28(14):1939. https://doi.org/10.1093/bioinformatics/bts268

    Article  Google Scholar 

  14. Siska C, Bowler R, Kechris K (2015) Bioinformatics 32(5):690. https://doi.org/10.1093/bioinformatics/btv633

    Article  Google Scholar 

  15. Singh AJ, Ramsey SA, Filtz TM, Kioussi C (2018) Cell Mol Life Sci 75(6):1013. https://doi.org/10.1007/s00018-017-2679-6

    Article  Google Scholar 

  16. McKenzie AT, Katsyv I, Song WM, Wang M, Zhang B (2016) BMC Syst Biol 10(1):106. https://doi.org/10.1186/s12918-016-0349-1, http://www.ncbi.nlm.nih.gov/pubmed/27846853%5Cnwww.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5111277

  17. Ha MJ, Baladandayuthapani V, Do KA (2015) Bioinformatics 31(21):3413. https://doi.org/10.1093/bioinformatics/btv406

    Article  Google Scholar 

  18. Tesson BM, Breitling R, Jansen RC (2010) BMC Bioinform 11(1):497. https://doi.org/10.1186/1471-2105-11-497, http://bmcbioinformatics.biomedcentral.com/articles/

  19. Watson M (2006) BMC Bioinform 7:509. https://doi.org/10.1186/1471-2105-7-509, http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17116249&retmode=ref&cmd=prlinks%5Cnpapers3://publication/

  20. Amar D, Safer H, Shamir R (2013) PLoS Comput Biol 9:3. https://doi.org/10.1371/journal.pcbi.1002955

  21. Bockmayr M, Klauschen F, Györffy B, Denkert C, Budczies J (2013) BMC Syst Biol 7(1):78. https://doi.org/10.1186/1752-0509-7-78, http://www.ncbi.nlm.nih.gov/pubmed/23945349%5Cnwww.biomedcentral.com/1752-0509/7/78

  22. Wang D, Gu J (2016) Quant Biol 4(1):58. https://doi.org/10.1007/s40484-016-0063-4

  23. Kayano M, Takigawa I, Shiga M, Tsuda K, Mamitsuka H (2011) Nucl Acids Res 39(11):1. https://doi.org/10.1093/nar/gkr130

    Article  Google Scholar 

  24. Lui TWH, Tsui NBY, Chan LWC, Wong CSC, Siu PMF, Yung BYM (2015) BMC Bioinform 16(1):182. https://doi.org/10.1186/s12859-015-0582-4, http://bmcbioinformatics.biomedcentral.com/articles/

  25. Cho SB, Kim J, Kim JH (2009) BMC Bioinform 10(1):109. https://doi.org/10.1186/1471-2105-10-109

    Article  Google Scholar 

  26. Choi Y, Kendziorski C (2009) Bioinformatics. https://doi.org/10.1093/bioinformatics/btp502

    Article  Google Scholar 

  27. Rahmatallah Y, Emmert-Streib F, Glazko G (2014) Bioinformatics 30(3):360. https://doi.org/10.1093/bioinformatics/btt687

    Article  Google Scholar 

  28. Bonacich P (1972) Sociol Methodol 4:176. https://www.jstor.org/stable/270732

  29. Santos SDS, De Almeida Galatro TF, Watanabe RA, Oba-Shinjo SM, Marie SKN, Fujita A (2015) PLoS ONE. https://doi.org/10.1371/journal.pone.0135831

  30. Fujita A, Vidal MC, Takahashi DY (2017) Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00066, http://journal.frontiersin.org/article/10.3389/fnins.2017.00066/full

  31. Jardim VC, Santos SSS, Fujita A, Buckeridge MS (2019) Front Genet 10(1). https://doi.org/10.3389/fgene.2019.00594

Download references

Acknowledgements

This work was partially supported by FAPESP (2018/21934-5, 2019/03615-2), CAPES (Finance Code 001), CNPq (303855/2019-3), Alexander von Humboldt Foundation, Newton Fund, and The Academy of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jardim, V.C., Moreno, C.C., Fujita, A. (2020). Computational Tools for Comparing Gene Coexpression Networks. In: da Silva, F.A.B., Carels, N., Trindade dos Santos, M., Lopes, F.J.P. (eds) Networks in Systems Biology. Computational Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-51862-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51862-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51861-5

  • Online ISBN: 978-3-030-51862-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics