Skip to main content

Classification of Mitochondrial Network Images Associated with the Study of Breast Cancer

  • Conference paper
  • First Online:
Image Processing and Capsule Networks (ICIPCN 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1200))

Included in the following conference series:

  • 814 Accesses

Abstract

Within various cellular processes, an increase in fission (a division of a single organelle into two or more independent structures) causes mitochondrial fragmentation and an increase in fusion (the opposite reaction of fission) produces a network of mitochondria that counteracts metabolic processes [1]. A balance between fission and fusion defines a mitochondrial morphology whose purpose is to meet metabolic demands and ensure removal of damaged organelles. These events have been associated with proliferation and redistribution of mitochondria, allowing the study of different breast cancer subtypes [2, 3]. This study presents a classification method for images of mitochondrial networks extracted from different cellular lines (MCF10A, BT549, MDAMB23, and CMF) belonging to different breast cancer subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang, Y., Zhao, J., Hu, L., Ying, X., Pan, Y., Wang, X.: Image classification toward breast cancer using deeply-learned quality features. J. Vis. Commun. Image Represent. 64, 102609 (2019)

    Article  Google Scholar 

  2. Zhang, Z., Chen, L., Humphries, B., Brien, R., Wicha, M.S., Luker, K.E., Chen, Y.-C., Yoon, E.: Morphology-based prediction of cancer cell migration using an artificial neural network and a random decision forest. Integr. Biol. 10(12), 758–767 (2018)

    Article  Google Scholar 

  3. Terao, M., Goracci, L., Celestini, V., Kurosaki, M., Bolis, M., Di Veroli, A., Vallerga, A., Fratelli, M., Lupi, M., Corbelli, A., Fiordaliso, F.: Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid. J. Exp. Clin. Cancer Res. 38(1), 1–20 (2019)

    Article  Google Scholar 

  4. Caino, M.C., Seo, J.H., Aguinaldo, A., Wait, E., Bryant, K.G., Kossenkov, A.V., Hayden, J.E., Vaira, V., Morotti, A., Ferrero, S., Bosari, S.: A neuronal network of mitochondrial dynamics regulates metastasis. Nat. Commun. 7(1), 1–11 (2016)

    Article  Google Scholar 

  5. Gonzalez, C.R., Woods, R.: Digital Image Processing, pp. 78–135. Prentice Hall, Upper Saddle River (2007)

    Google Scholar 

  6. Bishop, C.M.: Pattern Recognition and Machine Learning, pp. 423–428. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Iqbal, M.S., El-Ashram, S., Hussain, S., Khan, T., Huang, S., Mehmood, R., Luo, B.: Efficient cell classification of mitochondrial images by using deep learning. J. Opt. 48(1), 113–122 (2019)

    Article  Google Scholar 

  8. Aggarwal, S., Gabrovsek, L., Langeberg, L.K., Golkowski, M., Ong, S.E., Smith, F.D., Scott, J.D.: Depletion of dAKAP1–protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J. Biol. Chem. 294(9), 3152–3168 (2019)

    Article  Google Scholar 

  9. Bindhu, V.: Biomedical image analysis using semantic segmentation. J. Innov. Image Process. (JIIP) 1(02), 91–101 (2019)

    Article  Google Scholar 

  10. Escala-Garcia, M., Abraham, J., Andrulis, I.L., Anton-Culver, H., Arndt, V., Ashworth, A., Auer, P.L., Auvinen, P., Beckmann, M.W., Behrens, S.: A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nat. Commun. 11(1), 1–14 (2020)

    Article  Google Scholar 

  11. Reis, Y., Bernardo-Faura, M., Richter, D., Wolf, T., Brors, B., Hamacher-Brady, A., Eils, R., Brady, N.R.: Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. PLoS ONE 7(1), e28694 (2012)

    Article  Google Scholar 

  12. Hamacher-Brady, A., Stein, H.A., Turschner, S., Toegel, I., Mora, R., Jennewein, N., Efferth, T., Eils, R., Brady, N.R.: Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J. Biol. Chem. 286(8), 6587–6601 (2011)

    Article  Google Scholar 

  13. Wang, L., Ward, J., Bouyea, M., Barroso, M.: Heterogeneity of mitochondria morphology in breast cancer cells. In: Multiscale Imaging and Spectroscopy, vol. 11216, p. 112160P. International Society for Optics and Photonics (2020)

    Google Scholar 

  14. Darvishi, K., Sharma, S., Bhat, A.K., Rai, E., Bamezai, R.N.K.: Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 249(2), 249–255 (2007)

    Article  Google Scholar 

  15. Crudele, F., Bianchi, N., Reali, E., Galasso, M., Agnoletto, C., Volinia, S.: The network of non-coding RNAs and their molecular targets in breast cancer. Mol. Cancer 19(1), 1–18 (2020)

    Article  Google Scholar 

  16. Jin, J., Lu, J.Q., Wen, Y., Tian, P., Hu, X.H.: Deep learning of diffraction image patterns for accurate classification of five cell types. J. Biophotonics 13(3), e201900242 (2020)

    Article  Google Scholar 

  17. Vernier, M., Dufour, C.R., McGuirk, S., Scholtes, C., Li, X., Bourmeau, G., Giguère, V.: Estrogen-related receptors are targetable ROS sensors. Genes Dev. 34, 544–559 (2020)

    Article  Google Scholar 

  18. Yang, W.S., Moon, H.G., Kim, H.S., Choi, E.J., Yu, M.H., Noh, D.Y., Lee, C.: Proteomic approach reveals FKBP4 and S100A9 as potential prediction markers of therapeutic response to neoadjuvant chemotherapy in patients with breast cancer. J. Proteome Res. 11(2), 1078–1088 (2012)

    Article  Google Scholar 

  19. Ezzati, M., Yousefi, B., Velaei, K., Safa, A.: A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 117463 (2020)

    Google Scholar 

  20. Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)

    Article  Google Scholar 

  21. Smolková, K., Bellance, N., Scandurra, F., Génot, E., Gnaiger, E., Plecitá-Hlavatá, L., Rossignol, R.: Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J. Bioenerg. Biomembr. 42(1), 55–67 (2010)

    Article  Google Scholar 

  22. Smolková, K., Bellance, N., Scandurra, F., Génot, E., Gnaiger, E., Plecitá-Hlavatá, L., Ježek, P., Rossignol, R.: Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J. Bioener. Biomembr. 42(1), 55–67 (2010)

    Article  Google Scholar 

  23. Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40, 1201–1206 (2019)

    Google Scholar 

  24. Hannemann, J., Velds, A., Halfwerk, J.B., Kreike, B., Peterse, J.L., van de Vijver, M.J.: Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res. 8(5), R61 (2006)

    Article  Google Scholar 

  25. Dekker, T.J., Balluff, B.D., Jones, E.A., Schöne, C.D., Schmitt, M., Aubele, M., Kroep, J.R., Smit, V.T., Tollenaar, R.A., Mesker, W.E., Walch, A.: Multicenter matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) identifies proteomic differences in breast-cancer-associated stroma. J. Proteome Res. 13(11), 4730–4738 (2014)

    Article  Google Scholar 

  26. Giedt, R.J., Feruglio, P.F., Pathania, D., Yang, K.S., Kilcoyne, A., Vinegoni, C., Mitchison, T.J., Weissleder, R.: Computational imaging reveals mitochondrial morphology as a biomarker of cancer phenotype and drug response. Sci. Rep. 6, 32985 (2016)

    Article  Google Scholar 

  27. Shermis, R.B., Wilson, K.D., Doyle, M.T., Martin, T.S., Merryman, D., Kudrolli, H., Brenner, R.J.: Supplemental breast cancer screening with molecular breast imaging for women with dense breast tissue. Am. J. Roentgenol. 207(2), 450–457 (2016)

    Article  Google Scholar 

  28. Varela, N., Silva, J., Gonzalez, F.M., Palencia, P., Palma, H.H., Pineda, O.B.: Method for the recovery of images in databases of rice grains from visual content. Procedia Comput. Sci. 170, 983–988 (2020)

    Article  Google Scholar 

  29. Jones, M.M., Manwaring, N., Wang, J.J., Rochtchina, E., Mitchell, P., Sue, C.M.: Mitochondrial DNA haplogroups and age-related maculopathy. Arch. Ophthalmol. 125(9), 1235–1240 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, J., Varela, N., Arroyo, E.D., Lezama, O.B.P. (2021). Classification of Mitochondrial Network Images Associated with the Study of Breast Cancer. In: Chen, J.IZ., Tavares, J.M.R.S., Shakya, S., Iliyasu, A.M. (eds) Image Processing and Capsule Networks. ICIPCN 2020. Advances in Intelligent Systems and Computing, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-030-51859-2_17

Download citation

Publish with us

Policies and ethics