Skip to main content

An Integrated HIP Heat-Treatment of a Single Crystal Ni-Base Superalloy

  • Conference paper
  • First Online:
Superalloys 2020

Abstract

The heat-treatment of a second generation single crystal Ni-base superalloy was implemented in a hot isostatic press providing fast quenching rates. Thus, it is possible to homogenize chemical heterogeneities, close porosity, and to set a fine and uniform γ/γ′-microstructure via fast quenching and subsequent aging in one processing step. The microstructural evolution in dependence of parameters such as temperature, pressure, and quenching is investigated on different length scales using diverse characterization methods. A virtually defect-free microstructure is the outcome of this unique integrated supersolvus HIP heat-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed, RC (2008) The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge.

    Google Scholar 

  2. Lechner C, Seume J (2010) Stationäre Gasturbinen. Springer, Berlin & Heidelberg.

    Google Scholar 

  3. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propulsion Power 22:361–374.

    Google Scholar 

  4. Anton DL, Giamei AF (1985) Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy. Mater. Sci. Eng. A 76:173–180.

    Google Scholar 

  5. Lecomte-Beckers J (1988) Study of microporosity formation in nickel-base superalloys. Met. Trans. A 19 (9) 2341–2348.

    Google Scholar 

  6. Link T, Zabler S, Epishin A, Haibel A, Bansal M, Thibault X (2006) Synchrotron tomography of porosity in single-crystal nickel-base superalloys. Mater. Sci. Eng. A 425(1–2):47–54.

    Google Scholar 

  7. Sherry AH, Pilkington, R (1993) The creep fracture of a single-crystal superalloy. Mater. Sci. Eng. A 172(1–2):51–61.

    Google Scholar 

  8. Steuer S, Villechaise P, Pollock TM, Cormier J (2015) Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy. Mater. Sci. Eng. A 645:109–115.

    Google Scholar 

  9. Cervellon A, Cormier J, Mauget F, Hervier Z, Nadot Y (2018) Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature. Metall. Mater. Trans. A 49(9): 3938–3950.

    Google Scholar 

  10. Atkinson HV, Rickinson BA (1991) Hot Isostatic Processing. Hilger, Bristol.

    Google Scholar 

  11. Bocanegra-Bernal MH (2004) Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics. J. Mater. Sci. 39(21):6399–6420.

    Google Scholar 

  12. Khan T, Caron P (1986) Effect of processing conditions and heat treatments on mechanical properties of single-crystal superalloy CMSX-2. Mater. Sci. Tech. 2(5):486–492.

    Google Scholar 

  13. Fritzmeier LG (1988) The Influence of High Thermal Gradient Casting, Hot Isostatic Pressing and Alternate Heat Treatment on the Structure and Properties of a Single Crystal Nickel Base Superalloy. In: Duhl, DN (ed) Superalloys 1988. The Metallurgical Society, Warrendale, p. 265–274.

    Google Scholar 

  14. Grosdidier T, Hazotte A, Simon A (1996) Precipitation and dissolution processes in γ/γ´ single crystal nickel-based superalloys. Mater. Sci. Eng. A 256(1–2):183–196.

    Google Scholar 

  15. Babu SS, Miller MK, Vitek JM, David SA (2001) Characterization of the microstructure evolution in a nickel base superalloy during continuous cooling conditions. Acta Mater. 49(20):4149–4160.

    Google Scholar 

  16. Singh A, Nag S, Hwang JY, Viswanathan GB, Tiley J, Srinivasan R, Fraser HL, Banerjee R (2011) Influence of cooling rate on the development of multiple generations of γ´ precipitates in a commercial nickel base superalloy. Mater. Char. 62(9):878–886.

    Google Scholar 

  17. Parsa AB, Wollgramm P, Buck H, Somsen C, Kostka A, Povstugar I, Choi P, Raabe D, Dlouhy A, Müller J, Spiecker E, Demtroder K, Schreuer J, Neuking K, Eggeler G (2015) Advanced Scale Bridging Microstructure Analysis of Single Crystal Ni-Base Superalloys. Adv. Eng. Mater. 17(2):216–230.

    Google Scholar 

  18. Mujica Roncery L, Lopez-Galilea I, Ruttert B, Huth S, Theisen W (2016) Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy. Mater. Des. 97:544–552.

    Google Scholar 

  19. Fuchs GE (2001) Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng. A 300:52–60.

    Google Scholar 

  20. Epishin A, Link T, Svetlov IL, Nolze G, Neumann RS, Lucas H (2018) Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys. Int. J. Mater. Res. 104:776–782.

    Google Scholar 

  21. Bokstein BS, Epishin A, Link T, Rodin AO, Svetlov IL (2007) Model for the porosity growth in single-crystal nickel-base superalloys during homogenization. Scripta Mater. 57:801–804.

    Google Scholar 

  22. Pollock TM, Argon AS (1992) Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater 40(1):1–30.

    Google Scholar 

  23. Agudo Jacome L, Nörtershäuser P, Heyer JK, Lahni A, Frenzel J, Dlouhi A, Somsen C, Eggeler G (2013) High-temperature and low-stress creep anisotropy of single-crystal superalloys. Acta Mater 61(8):2926–2943.

    Google Scholar 

  24. Karunaratne M, Carter P, Reed R (2000) Interdiffusion in the face-centred cubic phase of the Ni–Re, Ni–Ta and Ni–W systems between 900 and 1300 °C. Mater. Sci. Eng. A 281(1–2):229–233.

    Google Scholar 

  25. Mujica Roncery L, Lopez-Galilea I, Ruttert B, Bürger D, Wollgramm P, Eggeler G, Theisen W (2016) On the effect of hot isostatic pressing on the creep life of a single crystal superalloy. Adv. Eng. Mater. 18: 1381–1387.

    Google Scholar 

  26. Ruttert B, Meid C, Mujica Roncery L, Lopez-Galilea I, Bartsch M, Theisen W (2018) Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy. Scripta Mater. 155:139–143.

    Google Scholar 

  27. Ruttert B, Horst O, Lopez-Galilea I, Langenkämper D, Kostka A, Somsen C, Goerler J.V, Ali M.A, Shchyglo O, Steinbach I, Eggeler G, Theisen W (2018) Rejuvenation of SX Ni-base superalloy turbine blades: Unlimited service life? Metall. Mater. Trans. A 49: 4262–4273.

    Google Scholar 

  28. Ruttert B, Ramsperger M, Mujica Roncery L, Lopez-Galilea I, Körner C, Theisen W (2016) Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron beam melting. Mat. Des. 110: 720–727.

    Google Scholar 

  29. Meid C, Dennstedt A, Ramsperger M, Pistor J, Ruttert B, Lopez-Galilea I, Theisen W, Körner C, Bartsch M (2019) Effect of heat treatment on the high temperature fatigue life of single crystalline nickel base superalloy additively manufactured by means of selective electron beam melting. Scripta Mater.168: 124–128.

    Google Scholar 

  30. Körner C, Ramsperger M, Meid C, Bürger D, Wollgramm P, Bartsch M, Eggeler G (2018) Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing. Metall. Mater. Trans. A 49: 3781–3786.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the collaborative research center SFB/TR 103 on single crystal superalloys through project T4. The authors further acknowledge the Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe for µCt measurements as well as the institute of Geology, Mineralogy, and Geophysics of the Ruhr-University Bochum for EPMA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ruttert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruttert, B., Lopez-Galilea, I., Theisen, W. (2020). An Integrated HIP Heat-Treatment of a Single Crystal Ni-Base Superalloy. In: Tin, S., et al. Superalloys 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-51834-9_38

Download citation

Publish with us

Policies and ethics