Skip to main content

Scene Merging Technology with High Adaptability

  • Conference paper
  • First Online:
Application of Intelligent Systems in Multi-modal Information Analytics (MMIA 2020)

Abstract

The image mosaic algorithm is used to splice this group of overlapping images into seamless high-resolution images. By splicing the overlapped images acquired at different times in the real world into a scene image with a wide field of vision, people can meet the needs of viewing a wide perspective scene, and even generate panoramas. Image mosaic technology is an effective technology of using computer vision to express the real world. By using image mosaic technology, redundant information of image can be eliminated effectively, and the storage of image information can be compressed. Therefore, the real world can be represented more effectively, vividly and objectively. It has important applications in large area static scene observation, virtual reality, video retrieval, and high-resolution image acquisition. So it is very important to study the accurate, fast and robust image mosaic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhi, J., Zhang, G., Yang, F., Yang, R., Liu, F., Song, X., Zhao, Y., Li, D.: Predicting mattic epipedons in the northeastern Qinghai-Tibetan Plateau using random forest. Geoderma Reg. 10, 1–10 (2017)

    Article  Google Scholar 

  2. Duan, T., Chapman, S.C., Guo, Y., Zheng, B.: Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crop. Res. 210, 71–80 (2017)

    Article  Google Scholar 

  3. Usevich, K., Markovsky, I.: Variable projection methods for approximate (greatest) common divisor computations. Theor. Comput. Sci. 681, 176–198 (2017)

    Article  MathSciNet  Google Scholar 

  4. Jiang, Y., Xu, K., Zhao, R., Zhang, G., Cheng, K., Zhou, P.: Stitching images of dual-cameras onboard satellite. ISPRS J. Photogramm. Remote. Sens. 128, 274–286 (2017)

    Article  Google Scholar 

  5. Entenberg, D., Pastoriza, J.M., Oktay, M.H., Voiculescu, S., Wang, Y., Sosa, M.S., Aguirre-Ghiso, J., Condeelis, J.: Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 128, 65–77 (2017)

    Article  Google Scholar 

  6. Mortani Barbosa, E., Simpson, S., Lee, J.C., Tustison, N., Gee, J., Shou, H.: Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation. Comput. Biol. Med. 89, 275–281 (2017)

    Article  Google Scholar 

  7. Shi, Z., Zhang, J., Cao, Q., Pang, K., Luo, T.: Full-reference image quality assessment based on image segmentation with edge feature. Signal Process. 145, 99–105 (2018)

    Article  Google Scholar 

  8. Attard, L., Debono, C.J., Valentino, G., Di Castro, M.: Vision-based change detection for inspection of tunnel liners. Autom. Constr. 91, 142–154 (2018)

    Article  Google Scholar 

  9. Fakiris, E., Zoura, D., Ramfos, A., Spinos, E., Georgiou, N., Ferentinos, G., Papatheodorou, G.: Object-based classification of sub-bottom profiling data for benthic habitat mapping. Comparison with sidescan and RoxAnn in a Greek shallow-water habitat. Estuar. Coast. Shelf Sci. 208, 219–234 (2018)

    Article  Google Scholar 

  10. Yin, J., Ou, B., Liu, X., Peng, F.: Mosaic secret-fragment-visible data hiding for secure image transmission based on two-step energy matching. Digit. Signal Process. 81, 173–185 (2018)

    Article  Google Scholar 

  11. Zhu, W., Chen, H., Ciechanowska, I., Spaner, D.: Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC PapersOnLine 51(17), 424–430 (2018)

    Article  Google Scholar 

  12. Chang, A., Jung, J., Maeda, M.M., Landivar, J.: Crop height monitoring with digital imagery from Unmanned Aerial System (UAS). Comput. Electron. Agric. 141, 232–237 (2017)

    Article  Google Scholar 

  13. Li, H., Wan, W., Fang, Y., Zhu, S., Chen, X., Liu, B., Hong, Y.: A Google Earth Engine-enabled software for efficiently generating high-quality user-ready Landsat mosaic images. Environ. Model Softw. 112, 16–22 (2019)

    Article  Google Scholar 

  14. Paul, K.E., Saraswathibai, V.S.: Maximum accurate medical image demosaicing using WRGB based Newton Gregory interpolation method. Measurement 135, 935–942 (2019)

    Article  Google Scholar 

  15. Wang, Z., Si, B., Chen, S., Jiao, B., Yan, X.: A nondestructive raman spectra stress 2D analysis for the pressure sensor sensitive silicon membrane. Eng. Fail. Anal. 105, 1252–1261 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ou Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Zhou, L., Qi, O. (2021). Scene Merging Technology with High Adaptability. In: Sugumaran, V., Xu, Z., Zhou, H. (eds) Application of Intelligent Systems in Multi-modal Information Analytics. MMIA 2020. Advances in Intelligent Systems and Computing, vol 1234. Springer, Cham. https://doi.org/10.1007/978-3-030-51556-0_47

Download citation

Publish with us

Policies and ethics