Skip to main content

From Bellman to Dijkstra: Set-Oriented Construction of Globally Optimal Controllers

  • Conference paper
  • First Online:
Advances in Dynamics, Optimization and Computation (SON 2020)

Abstract

We review an approach for discretizing Bellman’s optimality principle based on piecewise constant functions. By applying this ansatz to a suitable dynamic game, a discrete feedback can be constructed which robustly stabilizes a given nonlinear control system. Hybrid, event and quantized systems can be naturally handled by this construction.

An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.

Richard Bellman, 1957

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This property can be ensured by suitable asymptotic controllability properties and bounds on g.

  2. 2.

    Available at http://www.github.com/gaioguy/gaio.

  3. 3.

    The subsequent statements remain true if we replace \(\tilde{U}\) by any set \(\widehat{U}\subset U\) with \(\tilde{U} \subset \widehat{U}\) for which the argmin in (18) exists.

References

  1. Anta, A., Tabuada, P.: To sample or not to sample: self-triggered control for nonlinear systems. IEEE Trans. Autom. Control 55(9), 2030–2042 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  3. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO-set oriented numerical methods for dynamical systems. In: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 145–174, 805–807. Springer, Berlin (2001)

    Google Scholar 

  4. Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik 75(3), 293–317 (1997)

    Article  MathSciNet  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  6. Fleming, W.H.: The convergence problem for differential games. J. Math. Anal. Appl. 3, 102–116 (1961)

    Article  MathSciNet  Google Scholar 

  7. Grüne, L., Junge, O.: A set oriented approach to optimal feedback stabilization. Syst. Control Lett. 54(2), 169–180 (2005)

    Article  MathSciNet  Google Scholar 

  8. Grüne, L., Junge, O.: Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 702–707 (2007)

    Google Scholar 

  9. Grüne, L., Junge, O.: Global optimal control of perturbed systems. J. Optim. Theory Appl. 136(3), 411–429 (2008)

    Article  MathSciNet  Google Scholar 

  10. Grüne, L., Müller, F.: An algorithm for event-based optimal feedback control. In: Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 5311–5316 (2009)

    Google Scholar 

  11. Grüne, L., Müller, F.: Global optimal control of quantized systems. In: Proceedings of the 18th International Symposium on Mathematical Theory of Networks and Systems — MTNS2010, Budapest, Hungary, pp. 1231–1237 (2010)

    Google Scholar 

  12. Grüne, L., Nešić, D.: Optimization-based stabilization of sampled-data nonlinear systems via their approximate discrete-time models. SIAM J. Control Optim. 42(1), 98–122 (2003)

    Article  MathSciNet  Google Scholar 

  13. Junge, O.: Rigorous discretization of subdivision techniques. In: International Conference on Differential Equations, vol. 1, 2 (Berlin, 1999), pp. 916–918. World Scientific Publishing, River Edge (2000)

    Google Scholar 

  14. Junge, O., Osinga, H.M.: A set oriented approach to global optimal control. ESAIM Control Optim. Calc. Var. 10(2), 259–270 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lincoln, B., Rantzer, A.: Relaxing dynamic programming. IEEE Trans. Autom. Control 51(8), 1249–1260 (2006)

    Article  MathSciNet  Google Scholar 

  16. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U.S.A. 93(4), 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  17. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. U.S.A. 98(20), 11069–11074 (2001)

    Article  MathSciNet  Google Scholar 

  18. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  Google Scholar 

  19. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  20. von Lossow, M.: A min-man version of Dijkstra’s algorithm with application to perturbed optimal control problems. In: Proceedings of the GAMM Annual Meeting, Zürich, Switzerland (2007)

    Google Scholar 

Download references

Acknowledgements

OJ thanks Michael Dellnitz for being his mentor, colleague and friend since more than 25 years. OJ and LG gratefully acknowledge the support through the Priority Programme SPP 1305 Control Theory of Digitally Networked Dynamic Systems of the German Research Foundation. OJ additionally acknowledges support through a travel grant by DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Junge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grüne, L., Junge, O. (2020). From Bellman to Dijkstra: Set-Oriented Construction of Globally Optimal Controllers. In: Junge, O., Schütze, O., Froyland, G., Ober-Blöbaum, S., Padberg-Gehle, K. (eds) Advances in Dynamics, Optimization and Computation. SON 2020. Studies in Systems, Decision and Control, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-030-51264-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51264-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51263-7

  • Online ISBN: 978-3-030-51264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics