Skip to main content

3D Sound Reproduction

  • Chapter
  • First Online:
Auralization

Part of the book series: RWTHedition ((RWTH))

  • 1453 Accesses

Abstract

Computer simulations of acoustic scenes are an important prerequisite for rendering. Technology for 3D sound reproduction, the so-called audio front-end or the acoustic human-machine interface, is an essential component of VR systems, which must be capable of fulfilling high-quality standards concerning the psychoacoustically relevant cues. These cues may differ from one VR application to the next. Some applications require an exact localization, while for others monaural spectral features like reproduction with exact loudness and timbre are more important. In this chapter we focus on electroacoustic technology for surround sound reproduction. It concerns headphone and loudspeaker technology and audio formats which can be used as data interface between systems (Fig. 17.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Typically audiometric headphones

  2. 2.

    Liquid crystal device, organic light-emitting diode

  3. 3.

    For instance, created in a reverberant room far outside the reverberation distance

  4. 4.

    With exact calibration of the loudspeaker, it is actually the HRTF.

  5. 5.

    Mostly in use are “Dolby Surround®” or successor systems such as Dolby Atmos®.

  6. 6.

    Usually performed by decoding matrices

  7. 7.

    In practice, the first sum is approximated by truncation.

  8. 8.

    The source notation by a running index is omitted here.

  9. 9.

    Typically a musical instrument or a voice.

References

  • Ackermann D, Böhm C, Brinkmann F, Weinzierl S (2019) The acoustical effect of musicians’ movements during musical performances. Acust Acta Acust 105:356

    Article  Google Scholar 

  • Atal BS, Schroeder MR (1963) Apparent sound source translator, Tech. report. US Patent 3,236,949, February 23, 1963

    Google Scholar 

  • Bauer BB (1963) Stereophonic earphones and binaural loudspeakers. J Audio Eng Soc 9:148

    Google Scholar 

  • Berkhout AJ (1988) A holographic approach to acoustic control. J Audio Eng Soc 36:977

    Google Scholar 

  • Berzborn M, Vorländer M (2019) A high order rigid spherical microphone array design using MEMS microphones. In: Proceedings of 23rd ICA Aachen 2019, Germany

    Google Scholar 

  • Blauert J (1996) Spatial hearing: the psychophysics of human sound localization, 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

  • Bomhardt R, Braren H, Fels J (2016) Individualization of head-related transfer functions using principal component analysis and anthropometric dimensions. POMA 29:050007

    Google Scholar 

  • Braasch J (2005) In: Blauert J (ed) Modelling of binaural hearing. Chapter 4 in communication acoustics. Springer, Berlin Heidelberg/New York

    Google Scholar 

  • Brandenburg K, Werner S, Klein F, Sladeczek C (2016) Auditory illusions through headphones: history, challenges, and new solutions. In: Proceedings of international congress on acoustics, Buenos Aires 2016

    Google Scholar 

  • Daniel J (2000) Acoustic field representation, application to the transmission and the reproduction of complex sound environments in a multimedia context. Doctoral thesis, UniversitĂ© Paris 6, France

    Google Scholar 

  • Daniel, J, Moreau S (2004) Further study of sound field coding with higher order ambisonics. In: Proceedings of 118th AES Convention Berlin

    Google Scholar 

  • Duraiswami R, Zotkin DN, Li Z, Grassi E, Gumerov NA, Davis L (2005) High order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues. In: Proceedings of 119th AES Convention New York, NY, USA

    Google Scholar 

  • Gardner WG (1997) 3-D audio using loudspeakers. Ph.D thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Genuit K (1984) Ein Modell zur Beschreibung von AssenohrĂĽbertragungseigenschaften. Doctoral thesis RWTH Aachen University, Germany

    Google Scholar 

  • Gerzon MA (1976) Multidirectional sound reproduction systems. UK-Patent no. 3 997 725

    Google Scholar 

  • Hammershøi D (1995) Binaural technique – a method of true 3D sound reproduction. Doctoral thesis, Aalborg University, Denmark

    Google Scholar 

  • Kirkeby O, Nelson PA, Hamada H (1998) The “stereo dipole” – a virtual source imaging system using two closely spaced loudspeakers. J Audio Eng Soc 46:387

    Google Scholar 

  • Lentz T, Behler G (2004) Dynamic cross-talk cancellation for binaural synthesis in virtual reality environments. In: Proceedings of 117th convention audio engineering society, San Francisco

    Google Scholar 

  • Lentz T, Schröder D, Vorländer M, Assenmacher I (2007) Virtual reality system with integrated sound field simulation and reproduction. In: EURASIP J Appl Sig Process, Special Issue on Spatial Sound and Virtual Acoustics

    Google Scholar 

  • Møller H (1992) Fundamentals of binaural technology. Appl Acoust 36:171

    Article  Google Scholar 

  • Pulkki V (1997) Virtual sound source positioning using vector base amplitude panning. J Audio Eng Soc 45:456

    Google Scholar 

  • Schmitz A (1994) Naturgetreue Wiedergabe kopfbezogener Schallaufnahmen ĂĽber zwei Lautsprecher mit Hilfe eines Ăśbersprechkompensators. Doctoral thesis, RWTH Aachen University, Germany

    Google Scholar 

  • Spors S, Teutsch H, Kuntz A, Rabenstein R (2004) Sound field synthesis. In: Huang Y, Benesty J (eds) Audio signal processing for next-generation multimedia communication systems. Kluwer Academic Publishers, New York

    Google Scholar 

  • Xie B (2013) Head-related transfer function and virtual auditory display, 2nd edn. J. Ross Publishing, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorländer, M. (2020). 3D Sound Reproduction. In: Auralization. RWTHedition. Springer, Cham. https://doi.org/10.1007/978-3-030-51202-6_17

Download citation

Publish with us

Policies and ethics