Skip to main content

Chlorophylls as Food Additives

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

There is a growing consensus in the world food industry that aims at replacing synthetic ingredients by natural ingredients. In this respect, the industrial relevance of microalgae as sources of a broad spectrum of bioproducts and as promising feedstocks for natural additives production systems is constantly increasing. Among the numerous chemical specialties present in the constitution of the biomass of these microorganisms, chlorophylls molecules, and their derivatives are emerging compounds in research and development to achieve greater commercial exploitation. Although there is a broad application of chlorophylls molecules, its strong green colour is gaining importance as food colouring. Consequently, microalgae as production systems for obtaining natural chlorophylls and derived compounds, they are highly sustainable sources, consisting of a series of unique, including chlorophylls c, d, and f with remarkable biological properties and relevant technological characteristics. In this sense, the present chapter describes the characteristic structures of chlorophylls and their derivatives, distribution, including aspects related the biological properties of these compounds. Finally, it presents a comprehensive overview of its participation in the food industry and the current legal regulations of different countries for its application in foodstuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elhakim, Y. M., Hashem, M. M., El-Metwally, A. E., Anwar, A., Abo-EL-Sooud, K., Moustafa, G. G., et al. (2018). Comparative haemato-immunotoxic impacts of long-term exposure to tartrazine and chlorophyll in rats. International Immunopharmacology, 63, 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Agostiano, A., Catucci, L., Colafemmina, G., & Scheer, H. (2002). Role of functional groups and surfactant charge in regulating chlorophyll aggregation in micellar solutions. The Journal of Physical Chemistry B, 106, 1446–1454.

    Article  CAS  Google Scholar 

  • Airs, R. L., Temperton, B., Sambles, C., Farnham, G., Skill, S. C., & Llewellyn, C. A. (2014). Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Letters, 588, 3770–3777.

    Article  CAS  PubMed  Google Scholar 

  • Anvisa, Resolution No. 44 of 1977. Brazilian Health Regulatory Agency. Retrieved January 19, 2019, from http://portal.anvisa.gov.br/wps/portal/anvisa/anvisa/home/alimentos.

  • Attokaran, M. (2017). Natural Food Flavors and colorants (2nd edn, 223–228). Wiley & Sons Ltd.

    Google Scholar 

  • Barsanti, L., & Gualtieri, P. (2018). Is exploitation of microalgae economically and energetically sustainable. Algal Research, 31, 107–115.

    Article  Google Scholar 

  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., et al. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161–171.

    Article  Google Scholar 

  • Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., & Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56(13), 2209–2222.

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialization. Journal of Functional Foods, 25, 743–756.

    CAS  Google Scholar 

  • Cady, J. B., & Morgan, W. S. (1948). Treatment of chronic ulcers with chlorophyll: Review of a series of fifty cases. The American Journal of Surgery, 75(4), 562–569.

    Article  CAS  PubMed  Google Scholar 

  • Canjura, F. L., Watkins, R. H., & Schwartz, S. J. (1999). Color improvement and metallo-chlorophyll complexes in continuous flow aseptically processed peas. Journal of Food Science, 64(6), 987–990.

    Article  CAS  Google Scholar 

  • Carocho, M., Morales, P., & Ferreira, I. C. (2015). Natural food additives: Quo vadis? Trends in Food Science & Technology, 45(2), 284–295.

    Article  CAS  Google Scholar 

  • Castro, D. J., Löhr, C. V., Fischer, K. A., Waters, K. M., Webb-Robertson, B. J. M., Dashwood, R. H., … Williams, D. E. (2008). Identifying efficacious approaches to chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse model of transplacental carcinogenesis. Carcinogenesis, 30(2), 315–320.

    Google Scholar 

  • CFSA, China Food Additive Regulation. Retrieved January 21, 2019, from http://www.cfsa.net.cn/Article/News.aspx?id=4486BF3709A8E32BE89BDD2A36733D3CD2A97E8CE2A3F2E2.

  • Chen, M., Schliep, M., Willows, R. D., Cai, Z. L., Neilan, B. A., & Scheer, H. (2010). A Red-Shifted Chlorophyll. Science, 329, 1318–1319.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16(8), 427–431.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., & Roca, M. (2018). In vitro digestion of chlorophyll pigments from edible seaweeds. Journal of Functional Food, 40, 400–407.

    Article  CAS  Google Scholar 

  • Christaki, E., Bonos, E., & Florou-Paneri, P. (2015). Innovative microalgae pigments as functional ingredients in nutrition. In S. K. Kim (Ed.), In Handbook of marine microalgae (pp. 233–243). EUA: Academic Press.

    Chapter  Google Scholar 

  • Codex, The Codex Alimentarius General Standard of Food Additives. Retrieved January 30, 2019, from http://www.fao.org/gsfaonline/additives/index.html#S.

  • Coopers, P. W. (2009). Leveraging growth in the emerging functional foods industry: Trends and market opportunities. Functional Foods Reports, 1–22.

    Google Scholar 

  • D’Alessandro, E. B., & Filho, A. N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 58, 832–841.

    Article  CAS  Google Scholar 

  • Delgado-Vargas, F., & Paredes-Lopez, O. (2002). Natural colorants for food and nutraceutical uses. EUA: CRC Press.

    Book  Google Scholar 

  • Du, L., Jiang, N., Wang, G., Chu, Y., Lin, W., Qian, J., et al. (2014). Autophagy inhibition sensitizes bladder cancer cells to the photodynamic effects of the novel photosensitizer chlorophyllin e4. Journal of Photochemistry and Photobiology B: Biology, 133, 1–10.

    Article  CAS  Google Scholar 

  • Dufossé, L. (2018). Microbial pigments from bacteria, yeasts, fungi, and microalgae for the food and feed Industries. In A. Grumezescu & A. M. Holban (Eds.), Natural and artificial flavoring agents and food dyes (pp. 113–132). EUA: Academic Press.

    Chapter  Google Scholar 

  • Edwards, B. J. (1954). Treatment of chronic leg ulcers with ointment containing soluble chlorophyll. Physiotherapy, 40(6), 177–179.

    CAS  PubMed  Google Scholar 

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2015a). Scientific Opinion on the Re-Evaluation of Chlorophylls (E 140 (i)) as Food Additives. EFSA J. 13, 4089. Retrieved January 22, 2019, from https://www.efsa.europa.eu/en/efsajournal/pub/4089.

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2015b). Scientific Opinion on the Re-Evaluation of Chlorophylls (E 140 (ii)) as Food Additives. EFSA J. 13, 4081. Retrieved January 22, 2019, from https://www.efsa.europa.eu/en/efsajournal/pub/4085.

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2015c). Scientific Opinion on the Re-Evaluation of Chlorophylls (E 141 (i and ii)) as Food Additives. EFSA J. 13, 4151. Retrieved January 22, 2019, from https://www.efsa.europa.eu/en/efsajournal/pub/4151.

  • EFSA, Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives (OJ L 354 31.12.2008, p. 16). Retrieved January 27, 2019, from https://eur-lex.europa.eu/eli/reg/2008/1333/2016-05-25.

  • Egner, P. A., Stansbury, K. H., Snyder, E. P., Rogers, M. E., Hintz, P. A., & Kensler, T. W. (2000). Identification and characterization of chlorin e4Ethyl ester in sera of individuals participating in the chlorophyllin chemoprevention trial. Chemical Research in Toxicology, 13(9), 900–906.

    Article  CAS  PubMed  Google Scholar 

  • Enzing, C., Ploeg, M., Barbosa, M., & Sijtsma, L. (2014). Microalgae-based products for the food and feed sector: An outlook for Europe. JRC Scientific and policy reports, 19–37.

    Google Scholar 

  • Fernandes, A. S., Nogara, G. P., Menezes, C. R., Cichoski, A. J., Mercadante, A. Z., Jacob-Lopes, E., et al. (2017). Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International, 99, 1036–1041.

    Article  CAS  PubMed  Google Scholar 

  • Ferruzzi, M. G., Failla, M. L., & Schwartz, S. J. (2001). Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and Caco-2 human cell model. Journal of Agricultural and Food Chemistry, 49(4), 2082–2089.

    Article  CAS  PubMed  Google Scholar 

  • Ferruzzi, M. G., Failla, M. L., & Schwartz, S. J. (2002). Sodium copper chlorophyllin: In vitro digestive stability and accumulation by Caco-2 human intestinal cells. Journal of Agricultural and Food Chemistry, 50(7), 2173–2179.

    Article  CAS  PubMed  Google Scholar 

  • Ferruzzi, M. G., & Blakeslee, J. (2007). Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, 27(1), 1–12.

    Article  CAS  Google Scholar 

  • Fiedor, L., Stasiek, M., Mysliwa-Kurdziel, B., & Strzałka, K. (2003). Phytol as one of the determinants of chlorophyll interactions in solution. Photosynthesis Research, 78, 47–57.

    Article  CAS  PubMed  Google Scholar 

  • FSANZ, Food Standards Australia New Zealand. Retrieved January 21, 2019, from http://www.foodstandards.gov.au/foodsafety/standards/Pages/Food-Safety-Standards-(Chapter-3).aspx.

  • Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., Raymundo, A., 2010. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656–1664.

    Google Scholar 

  • FSSAI, The Indian Food Safety and Standards Regulations. Retrieved January 22, 2019, from https://www.fssai.gov.in/home/fsslegislation/fss-regulations.html.

  • Galaffu, N., Bortlik, K., & Michel, M. (2015). An industry perspective on natural food colour stability. In M. J. Scotter (Ed.), Colour additives for foods and beverages (pp. 91–130). Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  • García, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10(5), 1017–1024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grand View Research. Food Colors Market Size, Share & Trend Analysis Report By Product (Synthetic, Natural), By Application (Non-dairy Food, CSD & Non-alcoholic Beverages), And Segment Forecasts, 2018–2025. Retrieved June 27 2019, from https://www.grandviewresearch.com/industry-analysis/food-colorants-market.

  • Gouveia, L., Raymundo, A., Batista, A. P., Sousa, I., & Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3–4), 362.

    Article  CAS  Google Scholar 

  • Gouveia, L., Batista, A. P., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433–436.

    Article  CAS  Google Scholar 

  • Gouveia, L., Coutinho, C., Mendonça, E., Batista, A. P., Sousa, I., Bandarra, N. M., et al. (2008). Functional biscuits with PUFA-ω3 from Isochrysis galbana. Journal of the Science of Food and Agriculture, 88(5), 891–896.

    Article  CAS  Google Scholar 

  • Govindjee, K. D. (2004). Discoveries in oxygenic photosynthesis (1727–2003): A perspective. Photosynthesis Research, 80(1–3), 15–57.

    CAS  PubMed  Google Scholar 

  • Guskin, B. (1940). Chlorophyll—Its therapeutic place in acute and suppurative disease: Preliminary report of clinical use and rationale. The American Journal of Surgery, 49(1), 49–55.

    Article  Google Scholar 

  • Hajri, A., Coffy, S., Vallat, F., Evrard, S., Marescaux, J., & Aprahamian, M. (1999). Human pancreatic carcinoma cells are sensitive to photodynamic therapy in vitro and in vivo. British Journal of Surgery, 86(7), 899–906.

    Article  CAS  Google Scholar 

  • He, S., Zhang, N., & Jing, P. (2019). Insights into interaction of chlorophylls with sodium caseinate in aqueous nanometre-scale dispersion: color stability, spectroscopic, electrostatic, and morphological properties. RSC Advances, 9(8), 4530–4538.

    Article  CAS  Google Scholar 

  • Health Canada. Retrieved January 19, 2019, from http://www.inspection.gc.ca/food/general-food-requirementsandguidance/labelling/forindustry/foodadditives/eng/1468420159039/1468420338039?chap=7.

  • Henderson, B. W., Bellnier, D. A., Greco, W. R., Sharma, A., Pandey, R. K., Vaughan, L. A., et al. (1997). An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Research, 57(18), 4000–4007.

    CAS  PubMed  Google Scholar 

  • Hendry, G. A. F. (2000). Chlorophylls. In G. J. Lauro & F. J. Francis (Eds.), Natural food colorants—Science and technology (pp. 228–236). New York: Marcel Dekker.

    Google Scholar 

  • Henrikson, R. (1989). Earth food Spirulina (p. 180). Kenwood: Ronore Enterprises Inc.

    Google Scholar 

  • Higashi-Okai, K., Otani, S., & Okai, Y. (1998). Potent suppressive activity of pheophytin a and b from the non-polyphenolic fraction of green tea (Camellia sinensis) against tumor promotion in mouse skin. Cancer Letters, 129(2), 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Hong, C. O., Nam, M. H., Oh, J. S., Lee, J. W., Kim, C. T., Park, K. W., et al. (2016). Pheophorbide a from Capsosiphon fulvescens inhibits advanced glycation end products mediated endothelial dysfunction. Planta Medica, 82, 46–57.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz, B. (1951). Role of chlorophyll in proctology. The American Journal of Surgery, 81(1), 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey, A. M. (2004). Chlorophyll as a color and functional ingredient. Journal of Food Science, 69(5), 422–425.

    Article  Google Scholar 

  • Islam, M. N., Ishita, I. J., Jin, S. E., Choi, R. J., Lee, C. M., Kim, Y. S., et al. (2013). Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food and Chemical Toxicology, 55, 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., & Zepka, L. Q. (2019). Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1–7.

    Article  Google Scholar 

  • Janiszewska-Turak, E., Pisarska, A., & Królczyk, J. B. (2016). Natural food pigments application in food products. Nauka Przyroda Technologie, 10(4), 51.

    Article  Google Scholar 

  • Japanese Food Additives Regulations. Retrieved January 24, 2019, from https://www.mhlw.go.jp/english/topics/foodsafety/foodadditives/index.html.

  • Jenkins, S. V., Srivatsan, A., Reynolds, K. Y., Gao, F., Zhang, Y., Heyes, C. D., et al. (2016). Understanding the interactions between porphyrin-containing photosensitizers and polymer-coated nanoparticles in model biological environments. Journal of Colloid and Interface Science, 461, 225–231.

    Article  CAS  PubMed  Google Scholar 

  • Kamat, J. P., Boloor, K. K., & Devasagayam, T. P. A. (2000). Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, 1487(2–3), 113–127.

    Article  CAS  Google Scholar 

  • Kang, Y. R., Park, J., Jung, S. K., & Chang, Y. H. (2018). Synthesis, characterization, and functional properties of chlorophylls, pheophytins, and Zn-pheophytins. Food Chemistry, 245, 943–950.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y. R., Lee, Y. K., Kim, Y. J., & Chang, Y. H. (2019). Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chemistry, 272, 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Kephart, J. C. (1955). Chlorophyll derivatives-Their chemistry? commercial preparation and uses. Economic Botany, 9(1), 3–38.

    Article  CAS  Google Scholar 

  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanfer-Marquez, U. M., Barros, R. M. C., & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38(8–9), 885–891.

    Article  CAS  Google Scholar 

  • Lanfer-Marquez, U. M., & Sinnecker, P. (2008). Chlorophylls: Properties, biosynthesis, degradation and functions. In C. Socaciu (Ed.), Food colorants: Chemical and functional properties (pp. 195–211). Boca Raton, FL: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Lanfer-Marquez, U. M., & Borrmann, D. (2009). Chlorophylls. In T. Bechtold (Ed.), Handbook of natural colorants (pp. 243–253). USA: Wiley.

    Chapter  Google Scholar 

  • Larato, D. C., & Pfau, F. R. (1970). Effects of a water-soluble chlorophyllin ointment on gingival inflammation. The New York State Dental Journal, 36(5), 291–293.

    CAS  PubMed  Google Scholar 

  • Lee, J. W. (2012). Advanced biofuels and bioproducts. Norfolk, VA, USA: Springer Science & Business Media.

    Google Scholar 

  • Lehto, S., Buchweitz, M., Klimm, A., Straburger, R., Bechtold, C., & Ulberth, F. (2017). Comparison of food colour regulations in the EU and the US: a review of current provisions. Food Additives & Contaminants: Part A, 34(3), 335–355.

    Article  CAS  Google Scholar 

  • Li, W. T., Tsao, H. W., Chen, Y. Y., Cheng, S. W., & Hsu, Y. C. (2007). A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells. Photochemical & Photobiological Sciences, 6(12), 1341–1348.

    Article  CAS  Google Scholar 

  • Lu, Y. M., Xiang, W. Z., & Wen, Y. H. (2011). Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. Journal of Applied Phycology, 23, 256–269.

    Google Scholar 

  • Magnuson, B., Munro, I., Abbot, P., Baldwin, N., LopezGarcia, R., Ly, K., et al. (2013). Review of the regulation and safety assessment of food substances in various countries and jurisdictions. Food Additives & Contaminants: Part A, 30, 1147–1220.

    Article  CAS  Google Scholar 

  • Manning, W. M., & Strain, H. H. (1943). Chlorophyll D, A green pigment of red algae. Journal of Biological Chemistry, 151, 1–19.

    Article  CAS  Google Scholar 

  • Martins, F. C., Sentanin, M. A., & De Souza, D. (2019). Analytical methods in food additives determination: Compounds with functional applications. Food Chemistry, 272, 732–750.

    Article  CAS  PubMed  Google Scholar 

  • Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1–15.

    Article  CAS  Google Scholar 

  • Matos, Â. P. (2017). The impact of microalgae in food science and technology. Journal of the American Oil Chemists’ Society, 94(11), 1333–1350.

    Article  CAS  Google Scholar 

  • Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., et al. (2018). Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Environmental Research and Public Health, 15(11), 2436.

    Article  CAS  PubMed Central  Google Scholar 

  • Mortensen, A., & Geppel, A. (2007). HPLC-MS analysis of the green food colorant sodium copper chlorophyllin. Innovative Food Science & Emerging Technologies, 8(3), 419–425.

    Article  CAS  Google Scholar 

  • Mulders, K. J., Lamers, P. P., Martens, D. E., & Wijffels, R. H. (2014). Phototrophic pigment production with microalgae: Biological constraints and opportunities. Journal of Phycology, 50(2), 229–242.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, U., Murakami, A., & Koshimizu, K. (1996). Inhibitory effect of pheophorbide a, a chlorophyll-related compound, on skin tumor promotion in ICR mouse. Cancer Letters, 108, 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Oilgae. (2016). Emerging algae product and business opportunities. Comprehensive report on attractive algae product opportunities. Retrieved April 07, 2019, from www.oilgae.com/ref/report/non-fuel-algae-products.html.

  • Oplatowska-Stachowiak, M., & Elliott, C. T. (2015). Food colors: Existing and emerging food safety concerns. Critical Reviews in Food Science and Nutrition, 57(3), 524–548.

    Article  CAS  Google Scholar 

  • Osowski, A., Pietrzak, M., Wieczorek, Z., & Wieczorek, J. (2010). Natural compounds in the human diet and their ability to bind mutagens prevents DNA–mutagen intercalation. Journal of Toxicology and Environmental Health, Part A, 73(17–18), 1141–1149.

    Article  CAS  Google Scholar 

  • Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494–506.

    Article  CAS  PubMed  Google Scholar 

  • Özyurt, G., Uslu, L., Yuvka, I., Gökdoğan, S., Atci, G., Ak, B., et al. (2015). Evaluation of the cooking quality characteristics of pasta enriched with Spirulina platensis. Journal of Food Quality, 38(4), 268–272.

    Article  Google Scholar 

  • Palabiyik, I., Durmaz, Y., Öner, B., Toker, O. S., Coksari, G., Konar, N., et al. (2018). Using spray-dried microalgae as a natural coloring agent in chewing gum: Effects on color, sensory, and textural properties. Journal of Applied Phycology, 2(2013), 1–9.

    Google Scholar 

  • Pangestuti, R., & Kim, S. K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods, 3(4), 255–266.

    Article  CAS  Google Scholar 

  • Pareek, S., Sagar, N. A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G. A., & Yahia, E. M. (2017). Chlorophylls: Chemistry and biological functions. In E. M. Yahia (Ed.), Fruit and vegetable phytochemicals: Chemistry and human health (pp. 2, 269).

    Google Scholar 

  • Pérez-Gálvez, A., Viera, I., & Roca, M. (2017). Chemistry in the bioactivity of chlorophylls: An overview. Current Medicinal Chemistry, 24(40), 4515–4536.

    Article  PubMed  CAS  Google Scholar 

  • Pool, E. K., Shahidi, F., Mortazavi, S. A., Azizpour, M., & Daneshzad, E. (2016). Examination of the effect of Spirulina platensis microalgae on drying kinetics and the color change of kiwifruit pastille. Journal of Food Measurement and Characterization, 10(3), 634–642.

    Article  Google Scholar 

  • Raei, A., Yasini Ardakani, S. A., & Daneshi, M. (2017). Microencapsulation of the green pigment of alfalfa and its applications on heated food. Journal of Food Process Engineering, 40(5), e12529.

    Article  CAS  Google Scholar 

  • Rapozzi, V., Miculan, M., & Xodo, L. E. (2009). Evidence that photoactivated pheophorbide a causes in human cancer cells a photodynamic effect involving lipid peroxidation. Cancer Biology & Therapy, 8(14), 1318–1327.

    Article  CAS  Google Scholar 

  • Robey, R. W., Steadman, K., Polgar, O., Morisaki, K., Blayney, M., Mistry, P., et al. (2004). Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Research, 64(4), 1242–1246.

    Article  CAS  PubMed  Google Scholar 

  • Roca, M., Chen, K., & Pérez-Gálvez, A. (2016). Chlorophylls. In R. Carle R., Schweiggert R. (Eds.), Handbook on natural pigments in food and beverages: industrial applications for improving food color (pp. 125–158). Cambridge, UK:Woodhead Publishing.

    Google Scholar 

  • Rocha, D. S., & Reed, E. (2014). Pigmentos Naturais em Alimentos e sua Importância para a Saúde. Revista EVS-Revista de Ciências Ambientais e Saúde, 41(1), 76–85.

    Google Scholar 

  • Rodriguez-Amaya, D. B. (2019). Natural food pigments and colorants. In J. M. Mérillon & K. Ramawat (Eds.), Bioactive molecules in food (pp. 867–901). Cham: Springer.

    Chapter  Google Scholar 

  • Sawicki, A., Willows, R. D., & Chen, M. (2019). Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f. Photosynthesis Research, 1–13.

    Google Scholar 

  • Scheer, H. (2013). An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer (Eds.), Chlorophylls and bacteriochlorophylls, biochemistry, biophysics, functions and applications (pp. 1–19). Dordrecht: Springer.

    Google Scholar 

  • Scotter, M. J. (2015). Colour additives for foods and beverages. Sawston, Cambridge: Elsevier.

    Google Scholar 

  • Senge, M., Ryan, A., Letchford, K., MacGowan, S., & Mielke, T. (2014). Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry, 6(3), 781–843.

    Article  CAS  Google Scholar 

  • Shahid, M., & Mohammad, F. (2013). Recent advancements in natural dye applications: A review. Journal of Cleaner Production, 53, 310–331.

    Article  CAS  Google Scholar 

  • Sigurdson, G. T., Tang, P., & Giusti, M. M. (2017). Natural colorants: Food colorants from natural sources. Annual review of food science and technology, 8, 261–280.

    Article  CAS  PubMed  Google Scholar 

  • Solymosi, K., & Mysliwa-Kurdziel, B. (2016). Chlorophylls and their derivatives used in food industry and medicine. Mini Reviews in Medicinal Chemistry, 17(13), 1194–1222.

    Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Streit, N. M., Canterle, L. P., Canto, M. W. do, & Hecktheuer, L. H. H. (2005). As clorofilas. Ciência Rural, 35(3), 748–755.

    Google Scholar 

  • Srivatsan, A., Pera, P., Joshi, P., Wang, Y., Missert, J. R., Tracy, E. C., et al. (2015). Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a. Bioorganic & Medicinal Chemistry, 23, 3603–3617.

    Article  CAS  Google Scholar 

  • Stauber, J. L., & Jeffrey, S. W. (1988). Photosynthetic pigments in fifty-one species of marine diatoms. Journal of Phycology, 24, 158–172.

    Article  CAS  Google Scholar 

  • Strompfova, V., Kubašova, I., Farbakova, J., Gancarčikova, S., Mudroňova, D., Maďari, D., et al. (2015). Experimental application of Lactobacillus fermentum CCM 7421 in combination with chlorophyllin in dogs. Applied Microbiology and Biotechnology, 99, 8681–8690.

    Article  CAS  PubMed  Google Scholar 

  • Transparency Market Research. (2017). Copper Complexes of Chlorophyll and Chlorophyllins Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2017–2027. Retrieved April 12, 2019, from https://www.transparencymarketresearch.com.

  • Tumolo, T., & Lanfer-Marquez, U. M. (2012). Copper chlorophyllin: A food colorant with bioactive properties? Food Research International, 46(2), 451–459.

    Article  CAS  Google Scholar 

  • Ulbricht, C., Bramwell, R., Catapang, M., Giese, N., Isaac, R., Le, T.-D., et al. (2014). An evidence-based systematic review of chlorophyll by the natural standard research collaboration. Journal of Dietary Supplements, 11(2), 198–239.

    Article  CAS  PubMed  Google Scholar 

  • US FDA, Electronic Code of Federal Regulations (eCFR) Listing of Color Additives Exempt from Certification Title 21, Chapter I, Subchapter A, Part 73. (2019a). Retrieved January 21, 2019, from https://www.ecfr.gov/cgibin/retrieveECFR?gp=&SID=3463c48f55ae08efd099682901bb9500&r=PART&n=pt21.1.73.

  • US FDA, Electronic Code of Federal Regulations (eCFR) Listing of Color Additives Exempt from Certification Title 21, Chapter I, Subchapter A, Part 73. (2019b). Retrieved January 21, 2019, from https://www.ecfr.gov/cgibin/retrieveECFR?gp=&SID=3463c48f55ae08efd099682901bb9500&r=PART&n=pt21.1.73#se21.1.73_1530.

  • Viera, I., Chen, K., Ríos, J. J., Benito, I., Pérez-Gálvez, A., & Roca, M. (2018). First-Pass metabolism of chlorophylls in mice. Molecular Nutrition & Food Research, 62(17), 1800562.

    Article  CAS  Google Scholar 

  • Vieira, I., Pérez-Gálvez, A., & Roca, M. (2019). Green natural colorants. Molecules, 24, 154.

    Article  CAS  Google Scholar 

  • Volp, A. C. P., Renhe, I. R. T., & Stringueta, P. C. (2009). Pigmentos naturais bioativos. Alimentos e Nutrição, 20(1), 157–166.

    CAS  Google Scholar 

  • Voort, M. P. J., Vulstake, E., & Visser, C. L. M. (2015). Macro-economics of algae products. Public output report WP2A7.02 of the En Algae project, Swansea, June, p. 47.

    Google Scholar 

  • Wang, S. Y., Tseng, C. P., Tsai, K. C., Lin, C. F., Wen, C. Y., Tsay, H. S., et al. (2009). Bioactivity-guided screening identifies pheophytin a as a potent anti-hepatitis C virus compound from Lonicera hypoglauca Miq. Biochemical and Biophysical Research Communications, 385(2), 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Wohllebe, S., Ulbrich, C., Grimm, D., Pietsch, J., Erzinger, G., Richter, R., et al. (2011). Photodynamic treatment of Chaoborus crystallinus larvae with chlorophyllin induces necrosis and apoptosis. Photochemistry and Photobiology, 87, 1113–1122.

    Article  CAS  PubMed  Google Scholar 

  • Wrolstad, R. E., & Culver, C. A. (2012). Alternatives to those artificial FD&C food colorants. Annual review of food science and technology, 3, 59–77.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz, C., & Gokmen, V. (2016). Chlorophyll. In B. Caballero, P. M. Finglas, & F. Toldra (Eds.), Encyclopedia of food and health (pp. 37–41). Waltham: MA, Academic Press.

    Chapter  Google Scholar 

  • You, H., Yoon, H. E., Yoon, J. H., Ko, H., & Kim, Y. C. (2011). Synthesis of pheophorbide-a conjugates with anticancer drugs as potential cancer diagnostic and therapeutic agents. Bioorganic & Medicinal Chemistry, 19(18), 5383–5391.

    Article  CAS  Google Scholar 

  • Zapata, M., Garrido, J. L., & Jeffrey, S. W. (2006). Chlorophyll c pigments: Current status. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer (Eds.), Chlorophylls and bacteriochlorophylls (pp. 39–53). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Zapata, M., Rodríguez, F., Fraga, S., Barra, L., & Ruggiero, M. V. (2011). Chlorophyll c pigment patterns in 18 species (51 strains) of the genus Pseudo-nitzschia (bacillariophyceae) 1. Journal of Phycology, 47(6), 1274–1280.

    Article  CAS  PubMed  Google Scholar 

  • Zepka, L. Q., Jacob-Lopes, E., & Roca, M. (2019). Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science, 26, 94–100.

    Article  Google Scholar 

  • Zouari, N., Abid, M., Fakhfakh, N., Ayadi, M. A., Zorgui, L., Ayadi, M., et al. (2011). Blue-green algae (Arthrospira platensis) as an ingredient in pasta: Free radical scavenging activity, sensory and cooking characteristics evaluation. International Journal of Food Sciences and Nutrition, 62(8), 811–813.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Queiroz Zepka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, A.S., Nass, P.P., Oliveira, Á., Zepka, L.Q. (2020). Chlorophylls as Food Additives. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_16

Download citation

Publish with us

Policies and ethics