Skip to main content

Percutaneous Modalities

  • Chapter
  • First Online:
Surgical Spinal Oncology

Abstract

Percutaneous interventions have significantly changed the palliative and at times curative management of many spinal ailments. The ability to accurately and percutaneously attain tissue sampling of nearly any location avoids the need for open excision, assists with diagnosis and staging, and allows appropriate treatment planning. The ability to stabilize and increase the height of fractured vertebrae, thermally destroy intraosseous tumors, and preoperatively or permanently embolize hypervascular tumors has notably improved patient quality of life and surgical outcomes. In this chapter, we discuss the varied approaches, efficacy data, and evolving techniques related to these interventions.

The authors have no financial conflicts of interest regarding the content included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy WA, Destouet JM, Gilula LA. Percutaneous skeletal biopsy 1981: a procedure for radiologists--results, review, and recommendations. Radiology. 1981;139(3):545–9. https://doi.org/10.1148/radiology.139.3.7232719.

    Article  CAS  PubMed  Google Scholar 

  2. Tehranzadeh J, Tao C, Browning CA. Percutaneous needle biopsy of the spine. Acta Radiol. 2007;48(8):860–8. https://doi.org/10.1080/02841850701459783.

    Article  CAS  PubMed  Google Scholar 

  3. Roberts CC, Beauchamp CP. Guidelines for core needle biopsy of bone tumors: implications for limb-sparing. Radiographics. 2007;27:189–206.

    Article  Google Scholar 

  4. Rekhi B. Core needle biopsy versus fine needle aspiration cytology in bone and soft tissue tumors. J Cytol. 2019;36(2):118. https://doi.org/10.4103/JOC.JOC_125_18.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang YJ, Damron TA. Comparison of needle core biopsy and fine-needle aspiration for diagnostic accuracy in musculoskeletal lesions. Arch Pathol Lab Med. 2004;128(7):759–64. https://doi.org/10.1043/1543-2165(2004)128<759:CONCBA>2.0.CO;2.

    Article  PubMed  Google Scholar 

  6. Winking M, Stahl JP, Oertel M, Schnettler R, Böker DK. Treatment of pain from osteoporotic vertebral collapse by percutaneous PMMA vertebroplasty. Acta Neurochir. 2004;146(5):469–76. https://doi.org/10.1007/s00701-004-0259-7.

    Article  CAS  PubMed  Google Scholar 

  7. Wang B, Zhao C-P, Song L-X, Zhu L. Balloon kyphoplasty versus percutaneous vertebroplasty for osteoporotic vertebral compression fracture: a meta-analysis and systematic review. J Orthop Surg Res. 2018;13(1):264. https://doi.org/10.1186/s13018-018-0952-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boonen S, Van Meirhaeghe J, Bastian L, et al. Balloon kyphoplasty for the treatment of acute vertebral compression fractures: 2-year results from a randomized trial. J Bone Miner Res. 2011;26(7):1627–37. https://doi.org/10.1002/jbmr.364.

    Article  PubMed  Google Scholar 

  9. Farrokhi MR, Alibai E, Maghami Z. Randomized controlled trial of percutaneous vertebroplasty versus optimal medical management for the relief of pain and disability in acute osteoporotic vertebral compression fractures. J Neurosurg Spine. 2011;14(5):561–9. https://doi.org/10.3171/2010.12.SPINE10286.

    Article  PubMed  Google Scholar 

  10. Clark W, Bird P, Gonski P, et al. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2016;388(10052):1408–16. https://doi.org/10.1016/S0140-6736(16)31341-1.

    Article  PubMed  Google Scholar 

  11. Firanescu CE, de Vries J, Lodder P, et al. Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): randomised sham controlled clinical trial. BMJ. 2018:k1551. https://doi.org/10.1136/bmj.k1551.

  12. Bornemann R, Jansen TR, Kabir K, et al. Comparison of radiofrequency-targeted vertebral augmentation with balloon kyphoplasty for the treatment of vertebral compression fractures. Clin Spine Surg. 2017;30(3):E247–51. https://doi.org/10.1097/BSD.0000000000000050.

    Article  PubMed  Google Scholar 

  13. Tutton SM, Pflugmacher R, Davidian M, Beall DP, Facchini FR, Garfin SR. KAST study. Spine (Phila Pa 1976). 2015;40(12):865–75. https://doi.org/10.1097/BRS.0000000000000906.

    Article  Google Scholar 

  14. Korovessis P, Vardakastanis K, Repantis T, Vitsas V. Balloon kyphoplasty versus KIVA vertebral augmentation—Comparison of 2 techniques for osteoporotic vertebral body fractures. Spine (Phila Pa 1976). 2013;38(4):292–9. https://doi.org/10.1097/BRS.0b013e31826b3aef.

    Article  Google Scholar 

  15. Noriega DC, Rodrίguez-Monsalve F, Ramajo R, Sánchez-Lite I, Toribio B, Ardura F. Long-term safety and clinical performance of kyphoplasty and SpineJack® procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study. Osteoporos Int. 2019;30(3):637–45. https://doi.org/10.1007/s00198-018-4773-5.

    Article  CAS  PubMed  Google Scholar 

  16. Witham TF, Khavkin YA, Gallia GL, Wolinsky J-P, Gokaslan ZL. Surgery insight: current management of epidural spinal cord compression from metastatic spine disease. Nat Clin Pract Neurol. 2006;2(2):87–94; quiz 116. https://doi.org/10.1038/ncpneuro0116.

    Article  PubMed  Google Scholar 

  17. Lim B-S, Chang U-K, Youn S-M. Clinical outcomes after percutaneous vertebroplasty for pathologic compression fractures in osteolytic metastatic spinal disease. J Korean Neurosurg Soc. 2009;45(6):369–74. https://doi.org/10.3340/jkns.2009.45.6.369.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Erdem E, Samant R, Malak SF, et al. Vertebral augmentation in the treatment of pathologic compression fractures in 792 patients with multiple myeloma. Leukemia. 2013;27(12):2391–3. https://doi.org/10.1038/leu.2013.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berenson J, Pflugmacher R, Jarzem P, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35. https://doi.org/10.1016/S1470-2045(11)70008-0.

    Article  PubMed  Google Scholar 

  20. ACR; ASNR; ASSR; SIR; SNIS. Acr – Asnr – Assr – Sir – Snis Practice parameter for the performance of vertebral augmentation. 2017;1076:1–18. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/verebralaug.pdf

  21. Rajah G, Altshuler D, Sadiq O, Nyame VK, Eltahawy H, Szerlip N. Predictors of delayed failure of structural kyphoplasty for pathological compression fractures in cancer patients. J Neurosurg Spine. 2015;23(2):228–32. https://doi.org/10.3171/2014.11.SPINE14909.

    Article  PubMed  Google Scholar 

  22. Papanastassiou ID, Phillips FM, Van Meirhaeghe J, et al. Comparing effects of kyphoplasty, vertebroplasty, and non-surgical management in a systematic review of randomized and non-randomized controlled studies. Eur Spine J. 2012;21(9):1826–43. https://doi.org/10.1007/s00586-012-2314-z.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frey ME, Warner C, Thomas SM, et al. Sacroplasty: a ten-year analysis of prospective patients treated with percutaneous sacroplasty: literature review and technical considerations. Pain Physician. 2017;20(7):E1063–72. http://www.ncbi.nlm.nih.gov/pubmed/29149151

    PubMed  Google Scholar 

  24. Tong D, Gillick L, Hendrickson FR. The palliation of symptomatic osseous metastases final results of the study by the radiation therapy oncology group. Cancer. 1982;50(5):893–9. https://doi.org/10.1002/1097-0142(19820901)50:5<893::AID-CNCR2820500515>3.0.CO;2-Y.

    Article  CAS  PubMed  Google Scholar 

  25. Tomasian A, Hillen TJ, Chang RO, Jennings JW. Simultaneous bipedicular radiofrequency ablation combined with vertebral augmentation for local tumor control of spinal metastases. Am J Neuroradiol. 2018;39(9):1768–73. https://doi.org/10.3174/ajnr.A5752.

    Article  CAS  PubMed  Google Scholar 

  26. Dupuy DE, Liu D, Hartfeil D, et al. Percutaneous radiofrequency ablation of painful osseous metastases. Cancer. 2010;116(4):989–97. https://doi.org/10.1002/cncr.24837.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wallace AN, Tomasian A, Vaswani D, Vyhmeister R, Chang RO, Jennings JW. Radiographic local control of spinal metastases with percutaneous radiofrequency ablation and vertebral augmentation. Am J Neuroradiol. 2016;37(4):759–65. https://doi.org/10.3174/ajnr.A4595.

    Article  CAS  PubMed  Google Scholar 

  28. Reyes M, Georgy M, Brook L, et al. Multicenter clinical and imaging evaluation of targeted radiofrequency ablation (t-RFA) and cement augmentation of neoplastic vertebral lesions. J Neurointerv Surg. 2018;10(2):176–82. https://doi.org/10.1136/neurintsurg-2016-012908.

    Article  PubMed  Google Scholar 

  29. Tomasian A, Wallace A, Northrup B, Hillen TJ, Jennings JW. Spine cryoablation: pain palliation and local tumor control for vertebral metastases. Am J Neuroradiol. 2016;37(1):189–95. https://doi.org/10.3174/ajnr.A4521.

    Article  CAS  PubMed  Google Scholar 

  30. Masala S, Chiocchi M, Taglieri A, et al. Combined use of percutaneous cryoablation and vertebroplasty with 3D rotational angiograph in treatment of single vertebral metastasis: comparison with vertebroplasty. Neuroradiology. 2013;55(2):193–200. https://doi.org/10.1007/s00234-012-1096-7.

    Article  CAS  PubMed  Google Scholar 

  31. Khan MA, Deib G, Deldar B, Patel AM, Barr JS. Efficacy and safety of percutaneous microwave ablation and cementoplasty in the treatment of painful spinal metastases and myeloma. Am J Neuroradiol. 2018;39(7):1376–83. https://doi.org/10.3174/ajnr.A5680.

  32. Tschon M, Salamanna F, Ronchetti M, et al. Feasibility of electroporation in bone and in the surrounding clinically relevant structures. Technol Cancer Res Treat. 2016;15(6):737–48. https://doi.org/10.1177/1533034615604454.

    Article  PubMed  Google Scholar 

  33. Prince E, Ahn S. Interventional management of vertebral body metastases. Semin Intervent Radiol. 2013;30(03):278–81. https://doi.org/10.1055/s-0033-1353480.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Manke C, Bretschneider T, Lenhart M, et al. Spinal metastases from renal cell carcinoma: effect of preoperative particle embolization on intraoperative blood loss. AJNR Am J Neuroradiol. 2001;22(5):997–1003. http://www.ncbi.nlm.nih.gov/pubmed/11337348

    CAS  PubMed  Google Scholar 

  35. Schirmer CM, Malek AM, Kwan ES, Hoit DA, Weller SJ. Preoperative embolization of hypervascular spinal metastases using percutaneous direct injection with n-butyl cyanoacrylate. Neurosurgery. 2006;59(2):E431–2. https://doi.org/10.1227/01.NEU.0000223503.92392.CE.

    Article  PubMed  Google Scholar 

  36. Mendel E, Bourekas E, Gerszten P, Golan JD. Percutaneous techniques in the treatment of spine tumors. Spine (Phila Pa 1976). 2009;34(Supplement):S93–S100. https://doi.org/10.1097/BRS.0b013e3181b77895.

    Article  Google Scholar 

  37. Smith TP, Koci T, Mehringer CM, et al. Transarterial embolization of vertebral hemangioma. J Vasc Interv Radiol. 1993;4(5):681–5. https://doi.org/10.1016/S1051-0443(93)71948-X.

    Article  CAS  PubMed  Google Scholar 

  38. Hurley MC, Gross BA, Surdell D, et al. Preoperative onyx embolization of aggressive vertebral hemangiomas. Am J Neuroradiol. 2008;29(6):1095–7. https://doi.org/10.3174/ajnr.A1010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekumar Madassery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madassery, S., Arslan, B., Tabriz, D.M. (2020). Percutaneous Modalities. In: Singh, K., Colman, M. (eds) Surgical Spinal Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-50722-0_17

Download citation

Publish with us

Policies and ethics