Skip to main content

The Effect of Menopause on the Sexual Dimorphism in the Human Retina – Texture Analysis of Optical Coherence Tomography Data

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Abstract

Sexual dimorphism in the human retina has recently been connected to gonadal hormones. In the study herein presented, texture analysis was applied to computed mean value fundus (MVF) images from optical coherence tomography data of female and male healthy adult controls. Two separate age-group analyses that excluded the probable perimenopause period of the women in the present study were performed, using a modified MVF image computation method that further highlights texture differences present in the retina. While distinct texture characteristics were found between premenopausal females and age-matched males, these differences almost disappeared in the older groups (postmenopausal women vs age-matched men), suggesting that sex-related texture differences in the retina can be correlated to the hormonal changes that women go through during the menopausal transition. These findings suggest that texture-based metrics may be used as biomarkers of physiology and pathophysiology of the retina and the central nervous system.

This study was supported by The Portuguese Foundation for Science and Technology (PEst-UID/NEU/04539/2019 and UID/04950/2017), by FEDER-COMPETE (POCI-01-0145-FEDER-007440 and POCI01-0145-FEDER-016428), and by Centro 2020 FEDER-COMPETE (BIGDATIMAGE, CENTRO-01-0145-FEDER-000016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010). https://doi.org/10.1109/RBME.2010.2084567

    Article  Google Scholar 

  2. Adhi, M., Aziz, S., Muhammad, K., Adhi, M.I.: Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography. PLoS ONE 7(5), e37638 (2012). https://doi.org/10.1371/journal.pone.0037638

    Article  Google Scholar 

  3. Anantrasirichai, N., Achim, A., Morgan, J.E., Erchova, I., Nicholson, L.: SVM-based texture classification in optical coherence tomography. In: IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1332–1335 (2013). https://doi.org/10.1109/ISBI.2013.6556778

  4. Bromberger, J.T., Matthews, K.A., Kuller, L.H., Wing, R.R., Meilahn, E.N., Plantinga, P.: Prospective study of the determinants of age at menopause. Am. J. Epidemiol. 145(2), 124–133 (1997). https://doi.org/10.1093/oxfordjournals.aje.a009083

    Article  Google Scholar 

  5. Celik, T., Tjahjadi, T.: Multiscale texture classification using dual-tree complex wavelet transform. Pattern Recogn. Lett. 30, 331–339 (2009). https://doi.org/10.1016/j.patrec.2008.10.006

    Article  Google Scholar 

  6. Chan, A., Duker, J.S., Ko, T.H., Fujimoto, J.G., Schuman, J.S.: Normal macular thickness measurements in healthy eyes using stratus optical coherence tomography. Arch. Ophthalmol. 124(2), 193–198 (2006). https://doi.org/10.1001/archopht.124.2.193

    Article  Google Scholar 

  7. Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian J. Remote Sens. 28(1), 45–62 (2002). https://doi.org/10.5589/m02-004

    Article  Google Scholar 

  8. Conners, R.W., Trivedi, M.M., Harlow, C.A.: Segmentation of a high-resolution urban scene using texture operators (Sunnyvale, California). Comput. Vis. Graph. Image Process. 25(3), 273–310 (1984). https://doi.org/10.1016/0734-189x(84)90197-x

    Article  Google Scholar 

  9. Çubuk, M., Kasım, B., Koçluk, Y., Sukgen, E.A.: Effects of age and gender on macular thickness in healthy subjects using spectral optical coherence tomography/scanning laser ophthalmoscopy. Int. Ophthalmol. 38(1), 127–131 (2017). https://doi.org/10.1007/s10792-016-0432-z

    Article  Google Scholar 

  10. Ferreira, H., et al.: Characterization of the retinal changes of the 3xTg-AD mouse model of Alzheimer’s disease. In: Henriques, J. (ed.) MEDICON 2019, IFMBE. vol. 76, pp. 1816–1821 (2020). https://doi.org/10.1007/978-3-030-31635-8

  11. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography Images. IEEE Trans. Med. Imag. 28, 1436–1447 (2009). https://doi.org/10.1109/TMI.2009.2016958

    Article  Google Scholar 

  12. Gold, E.B.: The timing of the age at which natural menopause occurs. Obstetr. Gynecol. Clin. North Am. 38(3), 425–440 (2011). https://doi.org/10.1016/j.ogc.2011.05.002

    Article  Google Scholar 

  13. Guedes, V., et al.: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmol. 110(1), 177–189 (2003). https://doi.org/10.1016/s0161-6420(02)01564-6

    Article  Google Scholar 

  14. Guimaraes, P., et al.: Ocular fundus reference images from optical coherence tomography. Comput. Med. Imag. Graph. 38, 381–389 (2014). https://doi.org/10.1016/j.compmedimag.2014.02.003

    Article  Google Scholar 

  15. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979). https://doi.org/10.1109/PROC.1979.11328

    Article  Google Scholar 

  16. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3, 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  17. Kashani, A.H., et al.: Retinal thickness analysis by race, gender, and age using stratus OCT. Am. J. Ophthalmol. 149, 496–502 (2010). https://doi.org/10.1016/j.ajo.2009.09.025

    Article  Google Scholar 

  18. Kassner, A., Thornhill, R.E.: Texture analysis: a review of neurologic MR imaging applications. Am. J. Neuroradiol. 31, 809–816 (2010). https://doi.org/10.3174/ajnr.A2061

    Article  Google Scholar 

  19. Kelty, P.J., Payne, J.F., Trivedi, R.H., Kelty, J., Bowie, E.M., Burger, B.M.: Macular thickness assessment in healthy eyes based on ethnicity using stratus OCT optical coherence tomography. Investigative Ophthalmol. Vis. Sci. 49(6), 2668–2672 (2008). https://doi.org/10.1167/iovs.07-1000

    Article  Google Scholar 

  20. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images - a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28, 119–134 (2006). https://doi.org/10.1109/TPAMI.2006.19

    Article  Google Scholar 

  21. London, A., Benhar, I., Schwartz, M.: The retina as a window to the brain - from eye research to CNS disorders. Nat. Rev. Neurol. (2012). https://doi.org/10.1038/nrneurol.2012.227

    Article  Google Scholar 

  22. Nunes, A., Ambrósio, A.F., Castelo-Branco, M., Bernardes, R.: Texture biomarkers of Alzheimer’s disease and disease progression in the mouse retina. In: 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering, pp. 41–46 (2018). https://doi.org/10.1109/BIBE.2018.00016

  23. Nunes, A., Serranho, P., Quental, H., Ambrosio, A.F., Castelo-Branco, M., Bernardes, R.: Sexual dimorphism of the adult human retina assessed by optical coherence tomography. In: Henriques, J. (ed.) MEDICON 2019, IFMBE. vol. 76, pp. 1830–1834 (2020). https://doi.org/10.1007/978-3-030-31635-8

  24. Nunes, A., et al.: Textural information from the retinal nerve fibre layer in multiple sclerosis. In: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (2019). https://doi.org/10.1109/ENBENG.2019.8692454

  25. Nunes, A., et al.: Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS ONE 14(6), e0218826 (2019). https://doi.org/10.1371/journal.pone.0218826

    Article  Google Scholar 

  26. Nuzzi, R., Scalabrin, S., Becco, A., Panzica, G.: Gonadal hormones and retinal disorders: a review. Front. Endocrinol. 9, 66 (2018). https://doi.org/10.3389/fendo.2018.00066

    Article  Google Scholar 

  27. Ooto, S., et al.: Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Investigative Ophthalmol. Vis. Sci. 52, 8769–8779 (2011). https://doi.org/10.1167/iovs.11-8388

    Article  Google Scholar 

  28. Ratnakumar, A., Zimmerman, S.E., Jordan, B.A., Mar, J.C.: Estrogen activates Alzheimer’s disease genes. Alzheimer’s & Dementia: Translat. Res. Clin. Intervent. 5, 906–917 (2019). https://doi.org/10.1016/j.trci.2019.09.004

    Article  Google Scholar 

  29. Santoro, N.: Perimenopause: from research to practice. J. Women’s Health 25(4), 332–339 (2016). https://doi.org/10.1089/jwh.2015.5556

    Article  Google Scholar 

  30. Selesnick, I.W.W., Baraniuk, R.G.G., Kingsbury, N.C.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22, 123–151 (2005). https://doi.org/10.1109/MSP.2005.1550194

    Article  Google Scholar 

  31. Soh, L., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999). https://doi.org/10.1109/36.752194

    Article  Google Scholar 

  32. Song, W.K., Lee, S.C., Lee, E.S., Kim, C.Y., Kim, S.S.: Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Investigative Ophthalmol. Vis. Sci. 51, 3913–3918 (2010). https://doi.org/10.1167/iovs.09-4189

    Article  Google Scholar 

  33. Svetozarskiy, S.N., Kopishinskaya, S.V.: Retinal optical coherence tomography in neurodegenerative diseases (Review). Sovremennye Tehnologii v Medicine 7(1), 116–123 (2015). https://doi.org/10.17691/stm2015.7.1.14

    Article  Google Scholar 

  34. Wang, S., Lu, S., Dong, Z., Yang, J., Yang, M., Zhang, Y.: Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection. Appl. Sci. 6(169), 1–18 (2016). https://doi.org/10.3390/app6060169

    Article  Google Scholar 

  35. Wong, A., Chan, C., Hui, S.: Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye 19, 292–297 (2005). https://doi.org/10.1038/sj.eye.6701466

    Article  Google Scholar 

  36. World Medical Association: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 310(20), 2191–2194 (2013). https://doi.org/10.1001/jama.2013.281053

    Article  Google Scholar 

  37. Zhu, D., et al.: Age at natural menopause and risk of incident cardiovascular disease: a pooled analysis of individual patient data. Lancet Public Health 4, 553–564 (2019). https://doi.org/10.1016/S2468-2667(19)30155-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Bernardes .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunes, A., Serranho, P., Quental, H., Castelo-Branco, M., Bernardes, R. (2020). The Effect of Menopause on the Sexual Dimorphism in the Human Retina – Texture Analysis of Optical Coherence Tomography Data. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics