Skip to main content

Amphibious Robotic Propulsive Mechanisms: Current Technologies and Open Challenges

  • Chapter
  • First Online:

Abstract

Amphibious robots capable of transition from aquatic to terrestrial locomotion face significant challenges associated with propulsive efficacy in each environment. Conventionally, amphibious robots have utilized separate systems for aquatic and terrestrial locomotion, such as rotors and wheels, respectively. Recent approaches have attempted to consolidate the propulsive mechanism footprint and complexity in hopes of creating systems that mirror the performance and adaptability of living organisms. The crux of such a bioinspired design philosophy lies in integrating hydrodynamic profiles and terrestrial mobility, two seemingly antithetical features, into a cohesive robot architecture. State-of-the-art amphibious robots approach this challenge in a variety of ways and can be sorted into four distinct categories based on their locomotion mechanisms and body plans: (1) wheeled, (2) legged, (3) undulating, and (4) soft. This chapter surveys existing amphibious robots under each category, identifies seminal designs, and briefly examines them. We then synthesize findings from the survey to highlight open avenues of research for the continued development of amphibious robots. Lastly, we discuss our ongoing research developing a variable stiffness morphing limb as a potential next-generation propulsor for amphibious robots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F. Fish, Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspir. Biomim. 15, 025001 (2020)

    Article  Google Scholar 

  2. A.J. Ijspeert, A. Crespi, D. Ryczko, J.-M. Cabelguen, From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  3. J.A. Nyakatura, K. Melo, T. Horvat, K. Karakasiliotis, V.R. Allen, A. Andikfar, E. Andrada, P. Arnold, J. Lauströer, J.R. Hutchinson, M.S. Fischer, A.J. Ijspeert, Reverse-engineering the locomotion of a stem amniote. Nature 565(7739), 351–355 (2019)

    Article  Google Scholar 

  4. Y. Li, F. Fish, Y. Chen, T. Ren, J. Zhou, Bio-inspired robotic dog paddling: kinematic and hydro-dynamic analysis. Bioinspir. Biomim. 14(6), 066008 (2019)

    Google Scholar 

  5. A.J. Ijspeert, Biorobotics: using robots to emulate and investigate agile locomotion. Science 346, 196–203 (2014)

    Article  Google Scholar 

  6. L. Cui, P. Cheong, R. Adams, T. Johnson, AmBot: a bio-inspired amphibious robot for monitoring the swan-canning estuary system. J. Mech. Des. 136(11), 115001 (2014)

    Google Scholar 

  7. S. Dhull, D. Canelon, A. Kottas, J. Dancs, A. Carlson, N. Papanikolopoulos, Aquapod: a small amphibious robot with sampling capabilities, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), pp. 100–105

    Google Scholar 

  8. K. Tadakuma, R. Tadakuma, M. Aigo, M. Shimojo, M. Higashimori, M. Kaneko, Omni-Paddle amphibious spherical rotary paddle mechanism, in 2011 IEEE International Conference on Robotics and Automation (2011), pp. 5056–5062

    Google Scholar 

  9. B. Zhong, S. Zhang, M. Xu, Y. Zhou, T. Fang, W. Li, On a CPG-based hexapod robot: amphiHex-II with variable stiffness legs. IEEE/ASME Trans. Mechatron. 23(2), 542–551 (2018)

    Article  Google Scholar 

  10. H. Zhang (ed.), Climbing and Walking Robots: Towards New Applications (I-Tech Education and Publisher, Vienna 2007), oCLC: 254375799

    Google Scholar 

  11. T.R. Consi, B.R. Ardaugh, T.R. Erdmann, M. Matsen, M. Peterson, J. Ringstad, A. Vechart, C. Verink, An amphibious robot for surf zone science and environmental monitoring, in OCEANS 2005 MTS/IEEE (2005), p. 7

    Google Scholar 

  12. H. Greiner, A. Shectman, C. Won, R. Elsley, P. Beith, Autonomous legged underwater vehicles for near land warfare, in Proceedings of Symposium on Autonomous Underwater Vehicle Technology (1996), pp. 41–48

    Google Scholar 

  13. M. Dunbabin, L. Marques, Robots for environmental monitoring: significant advancements and applications. IEEE Rob. Autom. Mag. 19(1), 24–39 (2012)

    Article  Google Scholar 

  14. R.H. Harkins, T. Dunbar, A.S. Boxerbaum, R.J. Bachmann, R.D. Quinn, R. Vaidyanathan, S.C. Burgess, Confluence of active and passive control mechanisms enabling autonomy and terrain adaptability for robots in variable environments, in Advances in Electrical and Electronics Engineering—IAENG Special Edition of the World Congress on Engineering and Computer Science 2008 (2008), pp. 138–149

    Google Scholar 

  15. J. Ayers, J. Witting, C. Wilbur, P. Zavracky, N. McGruer, D. Massa, Biomimetic robots for shallow water mine countermeasures, in Autonomous Vehicles Mine Countermeasures Symposium (2000), p. 16

    Google Scholar 

  16. M.H. Dickinson, How animals move: an integrative view. Science 288(5463), 100–106 (2000)

    Article  Google Scholar 

  17. A. Crespi, A. Badertscher, A. Guignard, A. Ijspeert, AmphiBot I: an amphibious snake-like robot. Robot. Auton. Syst. 50(4), 163–175 (2005)

    Article  Google Scholar 

  18. A.A. Biewener, S.N. Patek, Animal Locomotion (Oxford University, Oxford, 2018)

    Book  Google Scholar 

  19. C. Li, T. Zhang, D.I. Goldman, Locomotion: energy cost of swimming, flying, and running. Science 177(4045), 222–228 (1972)

    Article  Google Scholar 

  20. P. Webb, Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Board Can. 190, 1–158 (1975)

    Google Scholar 

  21. P. Webb, R. Blake, Swimming, in Functional Vertebrate Morphology, ed. by M. Hildebrand, D.M. Bramble, K.F. Liem, D.B. Wake (Harvard University Press, Cambridge, 1985), pp. 110–128

    Google Scholar 

  22. F.E. Fish, Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiol. Biochem. Zool. 73(6), 683–698 (2000)

    Article  Google Scholar 

  23. C. Gans, Biomechanics: An Approach to Vertebrate Biology (Lippincott, Philadelphia, 1974)

    Google Scholar 

  24. M. Hildebrand, The adaptive significance of tetrapod gait selection. Am. Zool. 20, 255–267 (1980)

    Article  Google Scholar 

  25. R.J. Full, Mechanics and energetic of terrestrial locomotion: bipeds to polypeds, in Energy Transformations in Cells and Organisms, ed. by W. Wieser, E. Gnaiger (Thieme, Stuttgart, 1989), pp. 175–182

    Google Scholar 

  26. H.-T. Lin, G.G. Leisk, B. Trimmer, GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 026007 (2011)

    Google Scholar 

  27. K. Low, T. Hu, S. Mohammed, J. Tangorra, M. Kovac, Perspectives on biologically inspired hybrid and multi-modal locomotion. Bioinspir. Biomim. 10, 020301 (2015)

    Article  Google Scholar 

  28. R. Lock, S. Burgess, R. Vaidyanathan, Multi-modal locomotion: from animal to application. Bioinspir. Biomim. 9, 011001 (2014)

    Article  Google Scholar 

  29. S.E. Peters, L.T. Kamel, D.P. Bashor, Hopping and swimming in the leopard frog, Rana pipiens: I. Step cycles and kinematics. J. Morphol. 230(1), 1–16 (1996)

    Google Scholar 

  30. F.E. Fish, Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36(6), 628–641 (1996)

    Article  Google Scholar 

  31. L.A. Isaac, P.T. Gregory, Aquatic versus terrestrial locomotion: comparative performance of two ecologically contrasting species of European natricine snakes. J. Zool. 273(1), 56–62 (2007)

    Article  Google Scholar 

  32. M. Calisti, A. Arienti, F. Renda, G. Levy, B. Hochner, B. Mazzolai, P. Dario, C. Laschi, Design and development of a soft robot with crawling and grasping capabilities, in Proceedings of the 2012 IEEE International Conference on Robotics and Automation (2012), pp. 4950–4955

    Google Scholar 

  33. D.L. Hu, B. Cean, J.W.M. Bush, The hydrodynamics of water strider locomotion. Nature 424, 663–666 (2003)

    Article  Google Scholar 

  34. J.W. Glasheen, T.A. Mcmahon, A hydrodynamic model of the locomotion in the Basilisk Lizard. Nature 380, 340–342 (1996)

    Article  Google Scholar 

  35. S.T. Hsieh, Three-dimensional hindlimb kinematics of water running in the plumed Basilisk Lizard (Basiliscus plumifrons). J. Exp. Biol. 206, 4363–4377 (2003)

    Article  Google Scholar 

  36. W.T. Gough, S.C. Farina, F.E. Fish, Aquatic burst locomotion by hydroplaning and running in common eiders (Somateria mollissima). J. Exp. Biol. 218, 1632–1638 (2015)

    Google Scholar 

  37. T. Williams, M. Ben-David, S. Noren, M. Rutishauser, K. McDonald, W. Heyward, Running energetics of the North American river otter: do short legs necessarily reduce efficiency on land? in Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, vol. 133 (2002), pp. 203–212

    Google Scholar 

  38. S. Vogel, Life in Moving Fluids (Princeton University, Princeton, 1994)

    Google Scholar 

  39. C.E. Jordan, A model of rapid-start swimming at intermediate Reynolds number: undulatory locomotion in the chaetognath Sagitta elegans. J. Exp. Biol. 169, 119–137 (1992)

    Google Scholar 

  40. M. LaBarbera, Why the wheels won’t go. Am. Nat. 121(3), 395–408 (1983)

    Article  Google Scholar 

  41. A. Biewener, Scaling body support in mammals: limb posture and muscle mechanics. Science 245, 45–48 (1989)

    Article  Google Scholar 

  42. A.A. Biewener, Biomechanical consequences of scaling. J. Exp. Biol. 208(9), 1665–1676 (2005)

    Article  Google Scholar 

  43. A. McNeil, Elastic Mechanisms in Animal Movement (Cambridge University, Cambridge, 1998)

    Google Scholar 

  44. T. Dawson, C. Taylor, Energetic cost of locomotion in kangaroos. Nature 246(5431), 313–314 (1973)

    Article  Google Scholar 

  45. D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  46. Y. Tang, Q. Zhang, G. Lin, J. Yin, Switchable adhesion actuator for amphibious climbing soft robot. Soft Robot. 5(5), 592–600 (2018)

    Article  Google Scholar 

  47. A.A.M. Faudzi, M.R.M. Razif, G. Endo, H. Nabae, K. Suzumori, Soft-amphibious robot using thin and soft McKibben actuator, in Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (2017), pp. 981–986

    Google Scholar 

  48. X. Liang, M. Xu, L. Xu, P. Liu, X. Ren, Z. Kong, J. Yang, S. Zhang, The AmphiHex: a novel amphibious robot with transformable leg-flipper composite propulsion mechanism, in Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), pp. 3667–3672

    Google Scholar 

  49. L. Shi, S. Guo, S. Mao, C. Yue, M. Li, K. Asaka, Development of an amphibious turtle-inspired spherical mother robot. J. Bionic Eng. 10(4), 446–455 (2013)

    Article  Google Scholar 

  50. A.J. Ijspeert, A. Crespi, Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model, in Proceedings of the 2007 IEEE International Conference on Robotics and Automation (2007), pp. 262–268

    Google Scholar 

  51. W. Wang, J. Yu, R. Ding, M. Tan, Bio-inspired design and realization of a novel multimode amphibious robot, in Proceedings of the 2009 IEEE International Conference on Automation and Logistics (2009), pp. 140–145

    Google Scholar 

  52. A. Crespi, K. Karakasiliotis, A. Guignard, A.J. Ijspeert, Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans. Robot. 29(2), pp. 308–320 (2013)

    Article  Google Scholar 

  53. J. Yu, Y. Tang, X. Zhang, C. Liu, Design of a wheel-propeller-leg integrated amphibious robot, in Proceedings of the 2010 11th International Conference on Control Automation Robotics Vision (2010), pp. 1815–1819

    Google Scholar 

  54. Y. Yi, Z. Geng, Z. Jianqing, C. Siyuan, F. Mengyin, Design, modeling and control of a novel amphibious robot with dual-swing-legs propulsion mechanism, in Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (2015), pp. 559–566

    Google Scholar 

  55. F. Fish, Aerobic energetics of surface swimming in the muskrat Ondatra Zibethicus. Phys. Zool. 55, 180–189 (1982)

    Google Scholar 

  56. T. Lode, Comparative measurements of terrestrial and aquatic locomotion in Mustela lutreola and M. putorius. Int. J. Mamm. Biol. 64, 110–115 (1999)

    Google Scholar 

  57. T.M. Williams, Swimming by sea otters: adaptations for low energetic cost locomotion. J. Comp. Physiol. 164(6), 815–824 (1989)

    Article  Google Scholar 

  58. R. Shine, S. Shetty, Moving in two worlds: aquatic and terrestrial locomotion in sea snakes (Laticauda Colubrina, Laticaudidae): sea snake locomotion. J. Evol. Biol. 14(2), 338–346 (2001)

    Article  Google Scholar 

  59. T.M. Williams, W.A. Friedl, J.E. Haun, The physiology of bottlenose dolphins (Tursiops truncatus): heart rate, metabolic rate and plasma lactate concentration during exercise. J. Exp. Biol. 179, 31–46 (1993)

    Google Scholar 

  60. Amphibious 4WD WiFi Robotics SuperDroid. https://www.superdroidrobots.com/shop/item.aspx/ig42-sb4-ea-amphibious-4wd-wifi-robot/2121/

  61. J. Katz, Race Car Aerodynamics (Bentley Publishers, Cambridge, 1995)

    Google Scholar 

  62. S. Yamada, S. Hirose, G. Endo, K. Suzumori, H. Nabae, R-Crank: amphibious all terrain mobile robot, in Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (2016), pp. 1067–1072

    Google Scholar 

  63. V. Kaznov, M. Seeman, Outdoor navigation with a spherical amphibious robot, in Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (2010), pp. 5113–5118

    Google Scholar 

  64. K. Kawasaki, M. Zhao, K. Okada, M. Inaba, MUWA: multi-field universal wheel for air-land vehicle with quad variable-pitch propellers, in Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (2013), pp. 1880–1885

    Google Scholar 

  65. M.G. Bekker, Theory of Land Locomotion (University of Michigan Press, Michigan, 1956)

    Google Scholar 

  66. J.Y. Wong, Theory of Ground Vehicles (Wiley, New York, 1978)

    Google Scholar 

  67. G. Meirion-Griffith, M. Spenko, An empirical study of the terramechanics of small unmanned ground vehicles, in Proceedings of the IEEE Aerospace Conference (2010), pp. 1–6

    Google Scholar 

  68. Y. Sun, S. Ma, ePaddle mechanism: towards the development of a versatile amphibious locomotion mechanism, in International Conference on Intelligent Robots and Systems (2011), pp. 5035–5040

    Google Scholar 

  69. Y. Sun, S. Ma, Y. Yang, H. Pu, Towards stable and efficient legged race-walking of an ePaddle-based robot. Mechatronics 23(1), 108–120 (2013)

    Article  Google Scholar 

  70. Y. Shen, Y. Sun, H. Pu, S. Ma, Experimental verification of the oscillating paddling gait for an ePaddle-EGM amphibious locomotion mechanism. IEEE Rob. Autom. Lett. 2(4), 2322–2327 (2017)

    Article  Google Scholar 

  71. N.B. Ignell, N. Rasmusson, J. Matsson, An overview of legged and wheeled robotic locomotion, in Mini-Conference on Interesting Results in Computer Science and Engineering, vol. 21 (2012)

    Google Scholar 

  72. C. Bernstein, M. Connolly, M. Gavrilash, D. Kucik, S. Threatt, Demonstration of surf-zone crawlers: results from AUV Fest 01, in Surf Zone Crawler Group, Naval Surface Warfare Center, Panama City, FL (2001)

    Google Scholar 

  73. M.A. Klein, A.S. Boxerbaum, R.D. Quinn, R. Harkins, R. Vaidyanathan, Seadog: a rugged mobile robot for surf-zone applications, in IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (2012), pp. 1335–1340

    Google Scholar 

  74. M.F. Silva, J.T. Machado, A literature review on the optimization of legged robots. J. Vib. Control 18(12), 1753–1767 (2012)

    Article  MathSciNet  Google Scholar 

  75. J. Ayers, J. Witting, C. Olcott, N. McGruer, D. Massa, Lobster robots, in Proceedings of the 2000 International Symposium on Aqua Biomechanisms (2000)

    Google Scholar 

  76. S. Floyd, T. Keegan, J. Palmisano, M. Sitti, A novel water running robot inspired by basilisk lizards, in Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2006), pp. 5430–5436

    Google Scholar 

  77. H.S. Park, M. Sitti, Compliant footpad design analysis for a bio-inspired quadruped amphibious robot, in Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), pp. 645–651

    Google Scholar 

  78. H.S. Park, S. Floyd, M. Sitti, Roll and pitch motion analysis of a biologically inspired quadruped water runner robot. Int. J. Robot. Res. 29(10), 1281–1297 (2010)

    Article  Google Scholar 

  79. H. Kim, D. Lee, K. Jeong, T. Seo, Water and ground-running robotic platform by repeated motion of six spherical footpads. IEEE/ASME Trans. Mechatron. 21(1), 175–183 (2015)

    Google Scholar 

  80. Y. Chen, N. Doshi, B. Goldberg, H. Wang, R.J. Wood, Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nat. Commun. 9(1), 2495 (2018)

    Google Scholar 

  81. B. Kwak, J. Bae, Locomotion of arthropods in aquatic environment and their applications in robotics. Bioinspir. Biomim. 13(4), 041002 (2018)

    Google Scholar 

  82. G. Dudek, M. Jenkin, C. Prahacs, A. Hogue, J. Sattar, P. Giguere, A. German, H. Liu, S. Saunderson, A. Ripsman, S. Simhon, L. Torres, E. Milios, P. Zhang, I. Rekletis, A visually guided swimming robot, in Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (2005), pp. 3604–3609

    Google Scholar 

  83. G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L.-a. Torres-Mendez, M. Jenkin, A. German, A. Hogue, A. Ripsman, J. Zacher, E. Milios, H. Liu, P. Zhang, M. Buehler, C. Georgiades, AQUA: an amphibious autonomous robot. Computer 40(1), 46–53 (2007)

    Google Scholar 

  84. C. Prahacs, A. Saudners, M.K. Smith, D. McMordie, M. Buehler, Towards legged amphibious mobile robotics, in Proceedings of the Canadian Engineering Education Association (2011)

    Google Scholar 

  85. R. Quinn, J. Offi, D. Kingsley, R. Ritzmann, Improved mobility through abstracted biological principles, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System, vol. 3 (2002), pp. 2652–2657

    Google Scholar 

  86. A. Boxerbaum, P. Werk, R. Quinn, R. Vaidyanathan, Design of an autonomous amphibious robot for surf zone operation: part i mechanical design for multi-mode mobility, in Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2005), pp. 1459–1464

    Google Scholar 

  87. R. Harkins, J. Ward, R. Vaidyanathan, A. Boxerbaum, R. Quinn, Design of an autonomous amphibious robot for surf zone operations: part II–hardware, control implementation and simulation, in Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2005), pp. 1465–1470

    Google Scholar 

  88. A.S. Boxerbaum, M.A. Klein, J.E. Kline, S.C. Burgess, R.D. Quinn, R. Harkins, R. Vaidyanathan, Design, simulation, fabrication and testing of a bio-inspired amphibious robot with multiple modes of mobility. J. Robot. Mechatron. 24(4), pp. 629–641 (2012)

    Article  Google Scholar 

  89. B.B. Dey, S. Manjanna, G. Dudek, Ninja legs: Amphibious one degree of freedom robotic legs, in 2013 Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2013), pp. 5622–5628

    Google Scholar 

  90. A.R. Vogel, K.N. Kaipa, G.M. Krummel, H.A. Bruck, S.K. Gupta, Design of a compliance assisted quadrupedal amphibious robot, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (2014), pp. 2378–2383

    Google Scholar 

  91. S. Zhang, X. Liang, L. Xu, M. Xu, Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms. J. Bionic Eng. 10(4), 434–445 (2013)

    Article  Google Scholar 

  92. S. Zhang, Y. Zhou, M. Xu, X. Liang, J. Liu, J. Yang, AmphiHex-I: locomotory performance in amphibious environments with specially designed transformable flipper legs. IEEE/ASME Trans. Mechatron. 21(3), 1720–1731 (2016)

    Article  Google Scholar 

  93. S. Guo, S. Mao, L. Shi, M. Li, C. Yue, Development of a spherical amphibious mother robot, in Proceedings of the 2013 ICME International Conference on Complex Medical Engineering (2013), pp. 614–619

    Google Scholar 

  94. A. Crespi, A. Badertscher, A. Guignard, A.J. Ijspeert, Swimming and crawling with an amphibious snake robot, in Proceedings of the International Conference on Robotics and Automation (2005), pp. 3024–3028

    Google Scholar 

  95. T. Matsuo, T. Yokoyama, D. Ueno, K. Ishii, Biomimetic motion control system based on a CPG for an amphibious multi-link mobile robot. J. Bionic Eng. 5, 91–97 (2008)

    Article  Google Scholar 

  96. S. Yu, S. Ma, B. Li, Y. Wang, An amphibious snake-like robot: design and motion experiments on ground and in water, in Proceedings of the 2009 International Conference on Information and Automation (2009), pp. 500–505

    Google Scholar 

  97. S. Yu, S. Ma, B. Li, Y. Wang, An amphibious snake-like robot with terrestrial and aquatic gaits, in Proceedings of the 2011 IEEE International Conference on Robotics and Automation (2011), pp. 2960–2961

    Google Scholar 

  98. J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, J. Zhang, On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron. 17(5), 847–856 (2012)

    Article  Google Scholar 

  99. J. Yu, R. Ding, Q. Yang, M. Tan, J. Zhang, Amphibious pattern design of a robotic fish with wheel-propeller-fin mechanisms. J. Field Robot. 30(5), 702–716 (2013)

    Article  Google Scholar 

  100. Robotics Pliant Energy Systems. https://www.pliantenergy.com/

  101. Robot traversing sea, sand and snow, in Pliant Energy Systems. https://www.youtube.com/watch?v=2pVsaWwAOh0

  102. A.A. Transeth, K.Y. Pettersen, L. Påll, A survey on snake robot modeling and locomotion. Robotica 27(7), 999–1015 (2009)

    Article  Google Scholar 

  103. D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker, Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)

    Article  Google Scholar 

  104. F. Corucci, N. Cheney, F. Giorgio-Serchi, J. Bongard, C. Laschi, Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions. Soft Robot. 5(4), 475–495 (2018)

    Article  Google Scholar 

  105. A.D. Marchese, C.D. Onal, D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1) 75–87 (2014)

    Article  Google Scholar 

  106. R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot, in Proceedings of the National Academy of Sciences, vol. 108(51), pp. 20,400–20,403 (2011)

    Article  Google Scholar 

  107. T. Paschal, M.A. Bell, J. Sperry, S. Sieniewicz, R.J. Wood, J.C. Weaver, Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot. IEEE Robot. Autom. Lett. 4(4), 3348–3354 (2019)

    Article  Google Scholar 

  108. L. Hines, K. Petersen, G.Z. Lum, M. Sitti, Soft actuators for small-scale robotics. Adv. Mater. 29(13), 1603483 (2017)

    Google Scholar 

  109. L.A. Hirano, L.S. Martins-Filho, R.O. Duarte, J.F. de Paiva, Development of an amphibious robotic propulsor based on electroactive polymers, in Proceedings of the 2009 4th International Conference on Autonomous Robots and Agents (2009), pp. 284–289

    Google Scholar 

  110. N.W. Bartlett, M.T. Tolley, J.T.B. Overvelde, J.C. Weaver, B. Mosadegh, K. Bertoldi, G.M. Whitesides, R.J. Wood, A 3d-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015)

    Article  Google Scholar 

  111. J.L.C. Santiago, I.S. Godage, P. Gonthina, I.D. Walker, Soft robots and kangaroo tails: modulating compliance in continuum structures through mechanical layer jamming. Soft Robot. 3(2), 54–63 (2016)

    Article  Google Scholar 

  112. N.G. Cheng, M.B. Lobovsky, S.J. Keating, A.M. Setapen, K.I. Gero, A.E. Hosoi, K.D. Iagnemma, Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media, in Proceedings of the 2012 IEEE International Conference on Robotics and Automation (2012), pp. 4328–4333

    Google Scholar 

  113. A.R. Deshpande, Z.T.H. Tse, H. Ren, Origami-inspired bi-directional soft pneumatic actuator with integrated variable stiffness mechanism, in Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR) (2017), pp. 417–421

    Google Scholar 

  114. I.D. Falco, M. Cianchetti, A. Menciassi, A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspir. Biomim. 12(5), 056008 (2017)

    Google Scholar 

  115. R.L. Baines, J.W. Booth, F.E. Fish, R. Kramer-Bottiglio, Toward a bio-inspired variable-stiffness morphing limb for amphibious robot locomotion, in Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (2019), pp. 704–710

    Google Scholar 

  116. F.E. Fish, Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspir. Biomim. 15(2), 025001 (2020)

    Google Scholar 

  117. S. Seok, A. Wang, M.Y. Chuah, D. Otten, J. Lang, S. Kim, Design principles for highly efficient quadrupeds and implementation on the MIT cheetah robot, in IEEE International Conference on Robotics and Automation (2013), p. 3307–3312

    Google Scholar 

  118. A.J. Ijspeert, Amphibious and sprawling locomotion: From biology to robotics and back. Annu. Rev. Control Robot. Auton. Syst. 3(1), 173–193 (2020)

    Article  Google Scholar 

  119. C. Li, T. Zhang, D.I. Goldman, A terradynamics of legged locomotion on granular media. Science 339(5452), 1408–1412 (2013)

    Article  Google Scholar 

  120. H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers, R. Hatton, J. Mendelson, H. Choset, D. Hu, D. Goldman, Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science 346, 224–229 (2014)

    Article  Google Scholar 

  121. B. Zhong, Y. Zhou, X. Li, M. Xu, S. Zhang, Locomotion performance of the amphibious robot on various terrains and underwater with flexible flipper legs. J. Bionic Eng. 13(4), 525–536 (2016)

    Article  Google Scholar 

  122. R. Baines, S. Freeman, F. Fish, R. Kramer-Bottiglio, Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations. Bioinspir. Biomim. 15(2), 025002 (2020)

    Google Scholar 

  123. J. Bertin, R.M. Cummings, Aerodynamics for Engineers, 5th edn. (Pearson Prentice-Hall, Upper Saddle River, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Kramer-Bottiglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baines, R., Fish, F., Kramer-Bottiglio, R. (2021). Amphibious Robotic Propulsive Mechanisms: Current Technologies and Open Challenges. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_3

Download citation

Publish with us

Policies and ethics