Skip to main content

A Variational Formulation of Classical Nonlinear Beam Theories

  • Chapter
  • First Online:
Developments and Novel Approaches in Nonlinear Solid Body Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 130))

Abstract

This article intends to present a concise theory of spatial nonlinear classical beams followed by a special treatment of the planar case. Hereby the considered classical beams are understood as generalized one-dimensional continua that model the mechanical behavior of three-dimensional beam-like objects. While a onedimensional continuum corresponds to a deformable curve in space, parametrized by a single material coordinate and time, a generalized continuum is augmented by further kinematical quantities depending on the very same parameters. We introduce the following three nonlinear spatial beams: The Timoshenko beam, the Euler–Bernoulli beam and the inextensible Euler–Bernoulli beam. In the spatial theory, the Euler–Bernoulli beam and its inextensible companion are presented as constrained theories. In the planar case, both constrained theories are additionally described using an alternative kinematics that intrinsically satisfies the defining constraints of these theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51–73

    Google Scholar 

  • Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Continuum Mechanics and Thermodynamics 30(5):1103–1123

    Google Scholar 

  • Antman SS (2005) Nonlinear Problems of Elasticity, Applied Mathematical Sciences, vol 107, 2nd edn. Springer

    Google Scholar 

  • Ballard P, Millard A (2009) Poutres et Arcs Élastiques. Les Éditions de l’École Polytechnique

    Google Scholar 

  • Barchiesi E, Eugster SR, Placidi L, dell’Isola F (2019a) Pantographic beam: a complete second gradient 1D-continuum in plane. Zeitschrift für angewandte Mathematik und Physik 70(5):135

    Google Scholar 

  • Barchiesi E, Spagnuolo M, Placidi L (2019b) Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids 24(1):212–234

    Google Scholar 

  • Barchiesi E, Eugster SR, dell’Isola F, Hild F (2020) Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation. Mathematics and Mechanics of Solids 25(3):739–767

    Google Scholar 

  • Bersani A, dell’Isola F, Seppecher P (2019) Lagrange multipliers in infinite dimensional spaces, examples of application. In: Altenbach H, Öchsner A (eds) Encyclopedia of Continuum Mechanics, Springer, pp 1–8

    Google Scholar 

  • Betsch P, Steinmann P (2003) Constrained dynamics of geometrically exact beams. Computational Mechanics 31:49–59

    Google Scholar 

  • Boutin C, dell’Isola F, Giorgio I, Placidi L (2017) Linear pantographic sheets: asymptotic micro-macro models identification. Mathematics and Mechanics of Complex Systems 5(2):127–162

    Google Scholar 

  • Capobianco G, Eugster SR, Winandy T (2018) Modeling planar pantographic sheets using a nonlinear Euler–Bernoulli beam element based on B-spline functions. Proceedings in Applied Mathematics and Mechanics 18(1):1–2

    Google Scholar 

  • Cowper GR (1966) The Shear Coefficient in Timoshenko’s Beam Theory. Journal of Applied Mechanics 33(2):335–340

    Google Scholar 

  • dell’Isola F, Placidi L (2011) Variational principles are a powerful tool also for formulating field theories. In: dell’Isola F, Gavrilyuk S (eds) Variational models and methods in solid and fluid mechanics. CISM Courses and Lectures, vol 535, Springer, pp 1–15

    Google Scholar 

  • dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Académie des Sciences Série II, Mecanique, physique, chimie, astronomie 321(8):303–308

    Google Scholar 

  • dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics. Journal of Elasticity 118(1):113–125

    Google Scholar 

  • dell’Isola F, Della Corte A, Giorgio I, Scerrato D (2016a) Pantographic 2D sheets: Discussion of some numerical investigations and potential applications. International Journal of Non-Linear Mechanics 80:200–208

    Google Scholar 

  • dell’Isola F, Della Corte A, Greco L, Luongo A (2016b) Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution. International Journal of Solids and Structures 81:1–12

    Google Scholar 

  • dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL (2016c) Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 472(2185):1–23

    Google Scholar 

  • dell’Isola F, Seppecher P, et al (2019a) Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics 31(4):1231–1282

    Google Scholar 

  • dell’Isola F, Seppecher P, et al (2019b) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics 31(4):851–884

    Google Scholar 

  • dell’Isola F, Seppecher P, Placidi L, Barchiesi E, Misra A (2020a) Least Action and Virtual Work Principles for the Formulation of Generalized Continuum Models, Cambridge University Press, chap 8, pp 327–394

    Google Scholar 

  • dell’Isola F, Spagnuolo M, Barchiesi E, Giorgio I, Seppecher P (2020b) Pantographic Metamaterial: A (Not So) Particular Case, Cambridge University Press, chap 3, pp 103–138

    Google Scholar 

  • Deutschmann B, Eugster SR, Ott C (2018) Reduced models for the static simulation of an elastic continuum mechanism. IFAC-PapersOnLine 51(2):403 – 408

    Google Scholar 

  • Dill EH (1992) Kirchhoff’s theory of rods. Archive for History of Exact Sciences 44(1):1–23

    Google Scholar 

  • Elishakoff I, Kaplunov J, Nolde E (2015) Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia. Applied Mechanics Reviews 67(6):060,802

    Google Scholar 

  • Eugster SR (2015) Geometric Continuum Mechanics and Induced Beam Theories, Lecture Notes in Applied and Computational Mechanics, vol 75. Springer

    Google Scholar 

  • Eugster SR, dell’Isola F (2017) Exegesis of the introduction and sect. I from “Fundamentals of the mechanics of continua” by E. Hellinger. Zeitschrift für angewandte Mathematik und Mechanik 97(4):477–506

    Google Scholar 

  • Eugster SR, dell’Isola F (2018) Exegesis of sect. II and III.A from “Fundamentals of the mechanics of continua” by E. Hellinger. Zeitschrift für angewandte Mathematik und Mechanik 98(1):31–68

    Google Scholar 

  • Eugster SR, Deutschmann B (2018) A nonlinear Timoshenko beam formulation for modeling a tendon-driven compliant neck mechanism. Proceedings in Applied Mathematics and Mechanics 18(1):1–2

    Google Scholar 

  • Eugster SR, Glocker Ch (2017) On the notion of stress in classical continuum mechanics. Mathematics and Mechanics of Complex Systems 5(3-4):299–338

    Google Scholar 

  • Eugster SR, Steigmann DJ (2020) Variational methods in the theory of beams and lattices. In: Altenbach H, Öchsner A (eds) Encyclopedia of Continuum Mechanics, Springer, pp 1–9

    Google Scholar 

  • Eugster SR, Hesch C, Betsch P, Glocker Ch (2014) Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. International Journal for Numerical Methods in Engineering 97(2):111–129

    Google Scholar 

  • Germain P (1973) The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM Journal on Applied Mathematics 25:556–575

    Google Scholar 

  • Giorgio I, Rizzi NL, Turco E (2017) Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 473(2207)

    Google Scholar 

  • Greco L, Cuomo M(2013) B-spline interpolation of Kirchhoff-Love space rods. Computer Methods in Applied Mechanics and Engineering 256(0):251–269

    Google Scholar 

  • Harsch J, Eugster SR (2020) Finite element analysis of planar nonlinear classical beam theories. In: Abali BE, Giorgio I (eds) Developments and Novel Approaches in Nonlinear Solid Body Mechanics, Advanced Structured Materials, Springer

    Google Scholar 

  • Maurin F, Greco F, Desmet W (2019) Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models. Continuum Mechanics and Thermodynamics 31(4):1051–1064

    Google Scholar 

  • Meier C, Popp A, Wall WA (2014) An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering 278(0):445–478

    Google Scholar 

  • Rahali Y, Giorgio I, Ganghoffer J, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science 97:148 – 172

    Google Scholar 

  • Reissner E (1981) On finite deformations of space-curved beams. Zeitschrift für Angewandte Mathematik und Physik 32(6):734–744

    Google Scholar 

  • Shirani M, Luo C, Steigmann DJ (2019) Cosserat elasticity of lattice shells with kinematically independent flexure and twist. Continuum Mechanics and Thermodynamics 31:1087–1097

    Google Scholar 

  • Simo JC (1985) A finite strain beam formulation. the three-dimensional dynamic problem. part I. Computer Methods in Applied Mechanics and Engineering 49:55–70

    Google Scholar 

  • Steigmann DJ (2017) Finite Elasticity Theory. Oxford University Press Steigmann DJ, dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mechanica Sinica 31(3):373–382

    Google Scholar 

  • Steigmann DJ, Faulkner MG(1993)Variational theory for spatial rods. Journal of Elasticity 33(1):1–26

    Google Scholar 

  • Till J, Aloi V, Rucker C (2019) Real-time dynamics of soft and continuum robots based on Cosserat rod models. The International Journal of Robotics Research 38(6):723–746

    Google Scholar 

  • Timoshenko S, Goodier JN (1951) Theory of Elasticity, 2nd edn. McGraw-Hill book Company

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant No. 405032572 as part of the priority program 2100 Soft Material Robotic Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Eugster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eugster, S.R., Harsch, J. (2020). A Variational Formulation of Classical Nonlinear Beam Theories. In: Abali, B., Giorgio, I. (eds) Developments and Novel Approaches in Nonlinear Solid Body Mechanics. Advanced Structured Materials, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-030-50460-1_9

Download citation

Publish with us

Policies and ethics