Skip to main content

Thinking Outside the Box: Using Escape Room Games to Increase Interest in Cyber Security

  • Chapter
  • First Online:
Innovations in Cybersecurity Education

Abstract

It is no secret that there is a shortfall in cybersecurity teachers, students, and professionals across the globe. And to make matters worse, the interest level among diverse populations is very low. For this reason, it is necessary to find innovative ways to interest students as well as teachers in cybersecurity at the K–12 level. The prominent teaching tool has been the Capture the Flag (CTF) game. Although it may be an effective learning tool, the game is very competitive and can be intimidating and often frustrating for beginners to try and join in.

Developing exciting and innovative teaching pedagogy at the entry point may attract new talent and begin to help fill the cyber security gap. It will take a diverse workforce, with many interests and backgrounds, to meet the current demand for cyber security professionals. We need pedagogy that assures beginners that a cybersecurity career is not just for self-identified hackers. The necessary skill set also includes problem-solving, effective communication, working in groups, and creative thinking. Individuals with these competencies are needed at every level of the organization and in all occupations.

The cybersecurity-based escape room challenges participants to interact with their surroundings to uncover clues. It is an effective project-based learning tool and has the potential of being a go-to assessment of the future. As each new puzzle is discovered, players must either learn on-the-fly or demonstrate that they have previously acquired a cyber security skill. Additionally, the puzzles are designed in such a way that participants must work together to find the solution.

In this chapter, we describe how our game emerged as a standout among many other games. We then discuss our escape room mutations. Why and how we changed the game, and the teaching strategies implemented. We then give the full details of each puzzle, how to set up the game, hide the clues, and play the game. Finally, we discuss our successes, user experiences, and our future goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GenCyber. www.gen-cyber.com/. Accessed Feb 2020

  2. Teach, Learn, and Make with Raspberry Pi—Raspberry Pi. raspberrypi.org/. Accessed Feb 2020

  3. Welcome to VirtualBox.org! Oracle VM VirtualBox. www.virtualbox.org/. Accessed Feb 2020

  4. Our Most Advanced Penetration Testing Distribution, Ever. Kali Linux, 1 Apr 2020. www.kali.org/. Accessed Feb 2020

  5. Workshop 4.4. 2018 WiCyS Workshop—WiCyS—Women in Cybersecurity. WiCyS. www.wicys.net/2018-workshop. Accessed Feb 2020

  6. ASE ’18. USENIX, 10 Nov 2018. www.usenix.org/conference/ase18. Accessed Feb 2020

  7. Escape the Room. https://girlscybercamp.seas.gwu.edu/home/resources/. Accessed Feb 2020

  8. S. Mello-Stark, Thinking Outside the Box—Using Escape Room Games to Interest Teachers and Students in Cybersecurity. 2019 Innovations in Cybersecurity Education, National CyberWatch Center. Innovations in Cybersecurity Education Award-Winning Submission in Instruction for 2019, 2019. Accessed Feb 2020

    Google Scholar 

  9. S. Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (Anchor Books, New York, 1999). ISBN: 0-385-49532-3. Accessed Feb 2020

    Google Scholar 

  10. T. Barr, Invitation to Cryptology (Prentice Hall, Upper Saddle River, NJ). ISBN: 0-13-088976-8. Accessed Feb 2020

    Google Scholar 

  11. M. Bishop, Computer Security: Art and Science (Addison-Wesley, Boston, MA, 2003), pp. 343–344. Accessed Feb 2020

    Google Scholar 

  12. T.M. Jones-Wilson, Teaching problem-solving skills without sacrificing course content: marrying traditional lecture and active learning in an organic chemistry course. J. Coll. Sci. Teach. 35(1), 42–46 (2005). Accessed Feb 2020

    Google Scholar 

  13. L. B. Nilson, (2010) Teaching as Its Best, A Researched-Based Resource for College Instructors, 3rd edn. Jossey-Bass, A Wiley Imprint, San Francisco, CA. Accessed Feb 2020

    Google Scholar 

  14. G. Kress, C. Jewett, J. Ogborn, T. Charalampos, Multimodal Teaching and Learning: The Rhetoric of the Science Classroom (Continuum, London, 2006). Accessed Feb 2020

    Google Scholar 

  15. M. Gondree, Z.N.J. Peterson, T. Denning, Security through play. IEEE Secur. Priv. 11(3), 64–67 (2013). https://www.computer.org/csdl/mags/sp/2013/03/msp2013030064-abs.html. Accessed Feb 2020

    Article  Google Scholar 

  16. G. Jin, M. Tu, T. Kim, J. Heffron, J. White, Game-based cybersecurity training for high school students, in SIGCSE ’18: 49th ACM Technical Symposium on Computer Science Education, 21–24 Feb 2018, Baltimore, MD, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159591, http://www.nsfmaneuver.org/document/ACM_SIGCSE2018_Ge.pdf. Accessed Feb 2020

  17. M. Bashir A. Lambert, J.M.C. Wee, B. Guo, N. Memon, An examination of the vocational and psychological characteristics of cybersecurity competition participants. 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE 15). https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/wee. Accessed Feb 2020

  18. R. Picheta, The most commonly hacked passwords, revealed. CNN, Cable News Network, 23 Apr 2019. www.cnn.com/2019/04/22/uk/most-common-passwords-scli-gbr-intl/index.html. Accessed Feb 2020

Download references

Acknowledgments

Work described in this chapter was partially supported by NSA/NSF grant H98230-19-1-0166 and Rhode Island College Committee on Faculty Scholarship (CFS) Reassigned Time (RT) grant Spring 2020. The authors would also like to thank Dr. Aberdeen Siraj of Tennessee Tech University, Professor Emeritus Shelly Heller from The George Washington University, and Dr. Ashley Podhradsky from North Dakota State University for all their support on the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Mello-Stark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mello-Stark, S., VanValkenburg, M.A., Hao, E. (2020). Thinking Outside the Box: Using Escape Room Games to Increase Interest in Cyber Security. In: Daimi, K., Francia III, G. (eds) Innovations in Cybersecurity Education. Springer, Cham. https://doi.org/10.1007/978-3-030-50244-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50244-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50243-0

  • Online ISBN: 978-3-030-50244-7

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics