Skip to main content

On Computing the Hamiltonian Index of Graphs

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Abstract

For an integer \(r \ge 0\) the \( r \)-th iterated line graph \(L^{r}(G)\) of a graph \(G\) is defined by: (i) \(L^{0}(G) = G\) and (ii) \(L^{r}(G) = L(L^{(r- 1)}(G))\) for \(r > 0\), where \(L(G)\) denotes the line graph of \(G\). The Hamiltonian Index \(h(G)\) of \(G\) is the smallest \(r\) such that \(L^{r}(G)\) has a Hamiltonian cycle [Chartrand, 1968]. Checking if \(h(G) = k\) is \(\mathsf {NP}\)-hard for any fixed integer \(k \ge 0\) even for subcubic graphs \(G\) [Ryjáček et al., 2011]. We study the parameterized complexity of this problem with the parameter treewidth, \(tw(G)\), and show that we can find \(h(G)\) in time \(\mathcal {O}^{\star }((1 + 2^{(\omega + 3)})^{tw(G)}) \) where \(\omega \) is the matrix multiplication exponent. This generalizes various prior results on computing \(h(G)\) including an \(\mathcal {O}^{\star }((1 + 2^{(\omega + 3)})^{tw(G)}) \)-time algorithm for checking if \(h(G) = 1\) holds [Misra et al., CSR 2019].

The \(\mathsf {NP}\)-hard Eulerian Steiner Subgraph problem takes as input a graph \(G\) and a specified subset \(K\) of terminal vertices of \(G\) and asks if \(G\) has an Eulerian subgraph \(H\) containing all the terminals. A key ingredient of our algorithm for finding \(h(G)\) is an algorithm which solves Eulerian Steiner Subgraph in \(\mathcal {O}^{\star }((1 + 2^{(\omega + 3)})^{tw(G)}) \) time. To the best of our knowledge this is the first \(\mathsf {FPT}\) algorithm for Eulerian Steiner Subgraph, and generalizes previous results on various special cases.

Full version on arXiv: https://arxiv.org/abs/1912.01990.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertossi, A.A.: The edge Hamiltonian path problem is NP-complete. Inform. Process. Lett. 13(4–5), 157–159 (1981). https://doi.org/10.1016/0020-0190(81)90048-X

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1), 1–45 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inform. Comput. 243, 86–111 (2015)

    Article  MathSciNet  Google Scholar 

  4. Catlin, P.A.: Supereulerian graphs: a survey. J. Graph Theor. 16, 177–196 (1992)

    Article  Google Scholar 

  5. Catlin, P.A., Janakiraman, I.T.N., Srinivasan, N.: Hamilton cycles and closed trails in iterated line graphs. J. Graph Theor. 14(3), 347–364 (1990)

    Google Scholar 

  6. Chartrand, G.: On Hamiltonian line-graphs. Trans. Am. Math. Soc. 134(3), 559–566 (1968)

    Article  MathSciNet  Google Scholar 

  7. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

  8. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: FOCS 2011, pp. 150–159. IEEE (2011)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

  10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

  11. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

    Article  MathSciNet  Google Scholar 

  13. Harary, F., Nash-Williams, C.S.J.: On Eulerian and Hamiltonian graphs and line graphs. Can. Math. Bull. 8(6), 701–709 (1965)

    Article  MathSciNet  Google Scholar 

  14. Hauptmann, M., Karpiński, M.: A compendium on Steiner tree problems. Inst. für Informatik (2013). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.392.7444

  15. Hong, Y., Lin, J.L., Tao, Z.S., Chen, Z.H.: The Hamiltonian index of graphs. Discrete Math. 309(1), 288–292 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kammer, F., Tholey, T.: Approximate tree decompositions of planar graphs in linear time. Theor. Comput. Sci. 645, 60–90 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lai, H.J., Shao, Y., Yan, H.: An update on supereulerian graphs. WSEAS Trans. Math. 12(9), 926–940 (2013)

    Google Scholar 

  18. Lampis, M., Makino, K., Mitsou, V., Uno, Y.: Parameterized edge hamiltonicity. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 348–359. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_29

    Chapter  Google Scholar 

  19. Lampis, M., Makino, K., Mitsou, V., Uno, Y.: Parameterized edge hamiltonicity. Discrete Appl. Math. (2017). https://doi.org/10.1016/j.dam.2017.04.045

    Article  MATH  Google Scholar 

  20. Misra, N., Panolan, F., Saurabh, S.: On the parameterized complexity of edge-linked paths. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 286–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_25

    Chapter  Google Scholar 

  21. Philip, G., Rani, M.R., Subashini, R.: On computing the Hamiltonian index of graphs. CoRR abs/1912.01990 (2019). http://arxiv.org/abs/1912.01990

  22. Pulleyblank, W.R.: A note on graphs spanned by Eulerian graphs. J. Graph Theory 3(3), 309–310 (1979). https://doi.org/10.1002/jgt.3190030316

  23. Richey, M., Parker, R.G., Rardin, R.: On finding spanning Eulerian subgraphs. Naval Res. Logistics Q. 32(3), 443–455 (1985)

    Article  MathSciNet  Google Scholar 

  24. Ryjáček, Z., Woeginger, G.J., Xiong, L.: Hamiltonian index is NP-complete. Discrete Appl. Math. 159(4), 246–250 (2011). https://doi.org/10.1016/j.dam.2010.08.027

    Article  MathSciNet  MATH  Google Scholar 

  25. Sau, I., Thilikos, D.M.: Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs. J. Discrete Algorithms 8(3), 330–338 (2010)

    Article  MathSciNet  Google Scholar 

  26. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 887–898. ACM (2012)

    Google Scholar 

  27. Xiong, L., Liu, Z.: Hamiltonian iterated line graphs. Discrete Math. 256(1–2), 407–422 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geevarghese Philip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Philip, G., Rani, M.R., Subashini, R. (2020). On Computing the Hamiltonian Index of Graphs. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics