Skip to main content

Pipeline Response Under Landslide Action

  • Chapter
  • First Online:
Geohazards and Pipelines

Abstract

Numerical results for pipeline deformation subjected to landslide actions are presented, using advanced three-dimensional finite element models, similar to the ones employed in the previous two chapters. More specifically, a two-stage numerical methodology is developed. In the first stage, a “global” model is employed to simulate soil movement during the landslide event, ignoring pipeline presence. In the second stage, a “local” model is used, simulating an appropriate pipeline segment and the corresponding portion of the surrounding soil. The presented methodology is applied to study two representative cases: (a) pipeline response to soil movement parallel to its axis and (b) pipeline response to soil movement perpendicular to its axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Society of Civil Engineers (2009) Buried flexible steel pipe; design and structural analysis. In Whidden W R (ed) ASCE manual of practice MOP, pp 119

    Google Scholar 

  • Anastasopoulos I, Gazetas G, Bransby MF et al (2007) Fault rupture propagation through sand: finite element analysis and validation through centrifuge experiments. J Geotech Geoenviron Eng 133(8):943–958

    Article  Google Scholar 

  • Bruschi R, Bughi S, Spinazze M et al (2006) Impact of debris flows and turbidity currents on seafloor structures. Norw J Geol 86:317–337

    Google Scholar 

  • Chen LQ, Wu SJ, Lu HF et al (2014) Stress analysis of buried gas pipeline traversing sliding mass. Open Civ Eng J 8:239–243

    Article  Google Scholar 

  • Cocchetti G, di Prisco C, Galli A et al (2009a) Soil–pipeline interaction along unstable slopes: a coupled three-dimensional approach part 1: theoretical formulation. Can Geotech J 46(11):1289–1304

    Google Scholar 

  • Cocchetti G, di Prisco C, Galli A (2009b) Soil–pipeline interaction along unstable slopes: a coupled three-dimensional approach part 2: numerical analyses. Can Geotech J 46(11):1305–1321

    Google Scholar 

  • Comité Européen de Normalisation (2006) Eurocode 8, Part 4: Silos, tanks and pipelines, CEN EN 1998-4. Belgium, Brussels

    Google Scholar 

  • Dadfar B, El Naggar MH, Nastev M (2018) Vulnerability of buried energy pipelines subject to earthquake-triggered transverse landslides in permafrost thawing slopes. J Pipeline Syst Eng 9(4). https://doi.org/10.1061/(asce)ps.1949-1204.0000334

  • Daiyan N, Kenny S, Phillips R, Popescu R (2009) Parametric study of lateral-vertical pipeline/soil interaction in clay. In: Proceedings of the 1st International engineering mechanics and materials specialty conference, St. John’s, NL, Canada

    Google Scholar 

  • Daiyan N, Kenny S, Phillips R, and Popescu R (2010) Numerical investigation of oblique pipeline/soil interaction in sand. In: Proceedings of the 8th international pipeline conference, Calgary, Alberta, Canada

    Google Scholar 

  • di Prisco C, Nova R, Corengia A (2004) A model for landslide-pipe interaction analysis. Soils Found 44(3):1–12

    Article  Google Scholar 

  • European Gas Pipeline Incident Data Group (2018) Gas Pipeline Incidents, 10th Report of EGIG. EGIG VA 17.R.0395

    Google Scholar 

  • Gantes CJ, Bouckovalas G (2013) Seismic verification of the high pressure natural gas pipeline Komotini–Alexandroupoulis–Kipi in areas of active fault crossings. Struct Eng Int 23(2):204–208

    Article  Google Scholar 

  • Georgiadis M (1991) Landslide drag forces on pipelines. Soils Found 31(1):156–161

    Article  Google Scholar 

  • Guo PJ, Stolle DFE (2005) Lateral pipe–soil interaction in sand with reference to scale effect. J Geotech Geoenviron Eng 131(3):338–349

    Article  Google Scholar 

  • Han B, Wang Z, Zhao H et al (2012) Strain-based design for buried pipelines subjected to landslides. Pet Sci 9(2):236–241

    Article  Google Scholar 

  • Hsu TW, Chen YJ, Hung WC (2006) Soil restraint to oblique movement of buried pipes in dense sand. J Transp Eng 132(2):175–181

    Article  Google Scholar 

  • Li G, Zhang P, Li Z et al (2016) Safety length simulation of natural gas pipeline subjected to transverse landslide. Electron J Geotech Eng 21:4387–4399

    Google Scholar 

  • Liu X, O’ Rourke MJ (1997) Behaviour of continuous pipeline subject to transverse PGD. Earthq Eng Struct D 26(10):989–1003

    Google Scholar 

  • Liu PF, Zheng JY, Zhang BJ, Shi P (2010) Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method. Mater Design 31(3):1384–1391

    Article  Google Scholar 

  • Marti J (1976) Lateral loads exerted on offshore piles by subbottom movements. Dissertation, Department of Civil Engineering, Texas A&M University, Rep. No. MM 3008-76-5

    Google Scholar 

  • Parker EJ, Traverso CM, Moore R et al (2008) Evaluation of landslide impact on deepwater submarine pipelines. In: Offshore Technology Conference. https://doi.org/10.4043/19459-ms

  • Pazwash H, Robertson JM (1973) Forces on bodies in Bingham fluids. J Hydraul Res 13(1):35–53

    Article  Google Scholar 

  • Phillips R, Nobahar A, Zhou J (2004) Combined axial and lateral pipe-soil interaction relationship. In: Proceedings of the 5th international pipeline conference, Calgary, Alberta, Canada

    Google Scholar 

  • Randolph MF, Seo D, White DJ (2010) Parametric solutions for slide impact on pipelines. J Geotech Geoenviron Eng 136(7):940–949

    Article  Google Scholar 

  • Schapery RA, Dunlap WA (1978) Prediction of storm-induced sea bottom movements and platform forces. In: Proceedings of the offshore technology conference, Houston, Paper OTC3259

    Google Scholar 

  • Towhata I, Al-Hussaini TM (1988) Lateral loads on offshore structures exerted by submarine mudflows. Soils Found 28(3):26–34

    Article  Google Scholar 

  • Tsatsis A, Gelagoti F, Gazetas G (2018) Performance of a buried pipeline along the dip of a slope experiencing accidental sliding. Géotechnique 68(11):968–988

    Article  Google Scholar 

  • Vazouras P, Dakoulas P, Karamanos SA (2015) Pipe–soil interaction and pipeline performance under strike–slip fault movements. Soil Dyn Earthq Eng 72:48–65

    Article  Google Scholar 

  • Wu R, Mei Y, Deng Qet al (2014) Comparative analysis by numerical simulation on natural gas pipelines in different positions of landslide. In: ICPTT 2014: Creating Infrastructure for a Sustainable World, p 308–319

    Google Scholar 

  • Yimsiri S, Soga K, Yoshizaki K et al (2004) Lateral and upward soil-pipeline interactions in sand for deep embedment conditions. J Geotech Geoenviron Eng 130(8):830–842

    Article  Google Scholar 

  • Yuan F, Wang L, Guo Z, Shi R (2012a) A refined analytical model for landslide or debris flow impact on pipelines-Part I: Surface pipelines. Appl Ocean Res 35:95–104

    Article  Google Scholar 

  • Yuan F, Wang L, Guo Z, Xie Y (2012b) A refined analytical model for landslide or debris flow impact on pipelines–Part II: Embedded pipelines. Appl Ocean Res 35:105–114

    Article  Google Scholar 

  • Zhang J, Stewart DP, Randolph MF (2002) Modeling of shallowly embedded offshore pipelines in calcareous sand. J Geotech Geoenviron Eng 128(5):363–371

    Article  Google Scholar 

  • Zhang L, Xie Y, Yan X, Yang X (2016) An elastoplastic semi-analytical method to analyze the plastic mechanical behavior of buried pipelines under landslides considering operating loads. J Nat Gas Sci Eng 28:121–131

    Article  Google Scholar 

  • Zhang SZ, Li SY, Chen SN et al (2017) Stress analysis on large-diameter buried gas pipelines under catastrophic landslides. Pet Sci 14(3):579–585

    Article  Google Scholar 

  • Zhang L, Fang M, Pang X et al (2018) Mechanical behavior of pipelines subjecting to horizontal landslides using a new finite element model with equivalent boundary springs. Thin Wall Struct 124:501–513

    Article  Google Scholar 

  • Zheng JY, Zhang BJ, Liu PF, Wu LL (2012) Failure analysis and safety evaluation of buried pipeline due to deflection of landslide process. Eng Fail Anal 25:156–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Tsatsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsatsis, A., Gazetas, G., Kourkoulis, R. (2021). Pipeline Response Under Landslide Action. In: Karamanos, S.A., Gresnigt, A.M., Dijkstra, G.J. (eds) Geohazards and Pipelines. Springer, Cham. https://doi.org/10.1007/978-3-030-49892-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49892-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49891-7

  • Online ISBN: 978-3-030-49892-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics