Skip to main content

Transcutaneous Oxygen Tension: Principles and Applications

  • Living reference work entry
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

Transcutaneous tissue oxygen tension (tcpO2) is a noninvasive diagnostic test for peripheral arterial insufficiency and other conditions in which the O2 level at the skin will provide indirect knowledge regarding skin perfusion. TcpO2 is also a dynamic diagnostic tool that can be measured at rest, during exercise, and following exercise to compare the response to an O2 challenge or to revascularization, which can add significant insight into the treatment protocol for these patients. This chapter will mainly focus on the principles and utilization of tcpO2 to assess wound healing potential, screen for vascular disease, assess the success of revascularization, predict the amputation level, and the benefit of hyperbaric oxygen. Although, it carries many limitations, tcpO2 is a simple and sensitive noninvasive diagnostic test for peripheral arterial insufficiency that can serve to distinguish between vascular and other causes of exercise-induced leg pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lazaro-Martinez JL, Lopez-Moral M, Garcia-Alamino JM, Bohbot S, Sanz-Corbalan I, Garcia-Alvarez Y. Evolution of the TcPO2 values following hyperoxygenated fatty acids emulsion application in patients with diabetic foot disease: results of a clinical trial. J Wound Care. 2021;30(1):74–9.

    Google Scholar 

  2. Poredos P, Rakovec S, Guzic-Salobir B. Determination of amputation level in ischaemic limbs using tcPO2 measurement. Vasa. 2005;34(2):108–12.

    Google Scholar 

  3. Bunt TJ, Holloway GA. TcPO2 as an accurate predictor of therapy in limb salvage. Ann Vasc Surg. 1996;10(3):224–7.

    Google Scholar 

  4. Ladurner R, Kuper M, Konigsrainer I, Lob S, Wichmann D, Konigsrainer A, et al. Predictive value of routine transcutaneous tissue oxygen tension (tcpO2) measurement for the risk of non-healing and amputation in diabetic foot ulcer patients with non-palpable pedal pulses. Med Sci Monit. 2010;16(6):CR273–7.

    Google Scholar 

  5. Petrakis E, Sciacca V. Prospective study of transcutaneous oxygen tension (TcPO2) measurement in the testing period of spinal cord stimulation in diabetic patients with critical lower limb ischaemia. Int Angiol. 2000;19(1):18–25.

    Google Scholar 

  6. Chomard D, Habault P, Eveno D, Le Lamer S, Ledemeney M, Haon C. Criteria predictive of limb viability at 1 year in patients with chronic severe ischemia–TcPO2 and demographic parameters. Angiology. 2000;51(9):765–76.

    Google Scholar 

  7. Rommer P. [Systolic pressure measurement of the big toe (and of the ankle) as the first line of complete angiologic investigation comprising TcPO2, echography, and Doppler ultrasonography]. J Mal Vasc. 1997;22(1):64–6.

    Google Scholar 

  8. Padberg FT, Back TL, Thompson PN, Hobson RW, 2nd. Transcutaneous oxygen (TcPO2) estimates probability of healing in the ischemic extremity. J Surg Res. 1996;60(2):365–9.

    Google Scholar 

  9. Zubair M, Ahmad J. Transcutaneous oxygen pressure (TcPO2) and ulcer outcome in diabetic patients: Is there any correlation? Diabetes Metab Syndr. 2019;13(2):953–8.

    Google Scholar 

  10. Maufus M, Sevestre-Pietri MA, Sessa C, Pignon B, Egelhofer H, Dupas S, et al. Critical limb ischaemia and the response to bone marrow-derived cell therapy according to tcPO2 measurement. Vasa. 2017;46(1):23–8.

    Google Scholar 

  11. Huch A, Franzeck UK, Huch R, Bollinger A. A transparent transcutaneous oxygen electrode for simultaneous studies of skin capillary morphology, flow dynamics and oxygenation. Int J Microcirc Clin Exp. 1983;2(2):103–8.

    CAS  PubMed  Google Scholar 

  12. Steenfos HH, Tromholt N, Duelund Jacobsen J, Wimberley PD. Effects of heavy hyperventilation on transcutaneous and arterial oxygen tensions in healthy adults. Scand J Clin Lab Invest. 1989;49(6):567–71.

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Grueso AO, Martin-Paredero V, Paredero Del Bosque V. Assessment of transcutaneous oxygen tension in ischaemic legs by means of using an electric blanket and 40% O2. J Cardiovasc Surg (Torino). 1985;26(6):519–26.

    Google Scholar 

  14. Moosa HH, Peitzman AB, Makaroun MS, Webster MW, Steed DL. Transcutaneous oxygen measurements in lower extremity ischemia: effects of position, oxygen inhalation, and arterial reconstruction. Surgery. 1988;103(2):193–8.

    CAS  PubMed  Google Scholar 

  15. Andrews KL, Boon AJ, Dib M, Liedl DA, Yacyshyn A, Yacyshyn V. The use of elevation and dependency to enhance the predictive value of transcutaneous oxygen pressure measurements in the assessment of foot amputation healing. PM R. 2010;2(9):829–34.

    Article  PubMed  Google Scholar 

  16. Moosa HH, Falanga V, Steed DL, Makaroun MS, Peitzman AB, Eaglstein WH, et al. Oxygen diffusion in chronic venous ulceration. J Cardiovasc Surg. 1987;28(4):464–7.

    CAS  Google Scholar 

  17. Ueno H, Fukumoto S, Koyama H, Tanaka S, Maeno T, Murayama M, et al. Regions of arterial stenosis and clinical factors determining transcutaneous oxygen tension in patients with peripheral arterial disease. J Atheroscler Thromb. 2010;17(8):858–69.

    Article  PubMed  Google Scholar 

  18. Nishiguchi BK, Yu M, Suetsugu A, Jiang C, Takiguchi SA, Takanishi DM Jr. Determination of reference ranges for transcutaneous oxygen and carbon dioxide tension and the oxygen challenge test in healthy and morbidly obese subjects. J Surg Res. 2008;150(2):204–11.

    Article  PubMed  Google Scholar 

  19. Abbasi K, Shalileh K, Anvari MS, Rabbani S, Mahdanian A, Ahmadi SH, et al. Perivascular nitric oxide delivery to saphenous vein grafts prevents graft stenosis after coronary artery bypass grafting: a novel sheep model. Cardiology. 2011;118(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  20. Burgess EM, Matsen FA 3rd, Wyss CR, Simmons CW. Segmental transcutaneous measurements of PO2 in patients requiring below-the-knee amputation for peripheral vascular insufficiency. J Bone Joint Surg Am. 1982;64(3):378–82.

    Article  CAS  PubMed  Google Scholar 

  21. Franzeck UK, Talke P, Bernstein EF, Golbranson FL, Fronek A. Transcutaneous PO2 measurements in health and peripheral arterial occlusive disease. Surgery. 1982;91(2):156–63.

    CAS  PubMed  Google Scholar 

  22. Friedmann LW. The prosthesis–immediate or delayed fitting? Angiology. 1972;23(9):518–24.

    Article  CAS  PubMed  Google Scholar 

  23. Katsamouris A, Brewster DC, Megerman J, Cina C, Darling RC, Abbott WM. Transcutaneous oxygen tension in selection of amputation level. Am J Surg. 1984;147(4):510–7.

    Article  CAS  PubMed  Google Scholar 

  24. Malone JM, Anderson GG, Lalka SG, Hagaman RM, Henry R, McIntyre KE, et al. Prospective comparison of noninvasive techniques for amputation level selection. Am J Surg. 1987;154(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  25. Ratliff DA, Clyne CA, Chant AD, Webster JH. Prediction of amputation wound healing: the role of transcutaneous pO2 assessment. Br J Surg. 1984;71(3):219–22.

    Article  CAS  PubMed  Google Scholar 

  26. Matsen FA 3rd, Wyss CR, Robertson CL, Oberg PA, Holloway GA. The relationship of transcutaneous PO2 and laser Doppler measurements in a human model of local arterial insufficiency. Surg Gynecol Obstet. 1984;159(5):418–22.

    PubMed  Google Scholar 

  27. Wyss CR, Harrington RM, Burgess EM, Matsen FA 3rd. Transcutaneous oxygen tension as a predictor of success after an amputation. J Bone Joint Surg Am. 1988;70(2):203–7.

    Article  CAS  PubMed  Google Scholar 

  28. Christensen KS, Klarke M. Transcutaneous oxygen measurement in peripheral occlusive disease. An indicator of wound healing in leg amputation. J Bone Joint Surg Br. 1986;68(3):423–6.

    Article  CAS  PubMed  Google Scholar 

  29. Malone J, Ballard J. Amputation level determination techniques. In: Bernstein EF, editor. Vascular diagnosis. St. Louis: Mosby-Year Book; 1993. p. 568–74.

    Google Scholar 

  30. Ballard J, Malone J. Amputation in the diabetic. In: Rutherford RB, editor. Seminars in vascular surgery. Philadelphia: WB Saunders; 1992. p. 257–63.

    Google Scholar 

  31. van Weteringen W, Goos TG, van Essen T, Ellenberger C, Hayoz J, de Jonge RCJ, et al. Novel transcutaneous sensor combining optical tcPO2 and electrochemical tcPCO2 monitoring with reflectance pulse oximetry. Med Biol Eng Comput. 2020;58(2):239–47.

    Article  PubMed  Google Scholar 

  32. Kmiec MM, Hou H, Lakshmi Kuppusamy M, Drews TM, Prabhat AM, Petryakov SV, et al. Transcutaneous oxygen measurement in humans using a paramagnetic skin adhesive film. Magn Reson Med. 2019;81(2):781–94.

    Article  CAS  PubMed  Google Scholar 

  33. Jaquinandi V, Mahe G, Leftheriotis G, Saumet JL, Abraham P. Regarding “Reference value of transcutaneous oxygen measurement in diabetic patients compared with nondiabetic patients”. J Vasc Surg. 2009;49(1):279–80; author reply 80–1.

    Article  PubMed  Google Scholar 

  34. Biotteau E, Mahe G, Rousseau P, Leftheriotis G, Abraham P. Transcutaneous oxygen pressure measurements in diabetic and non-diabetic patients clinically suspected of severe limb ischemia: a matched paired retrospective analysis. Int Angiol. 2009;28(6):479–83.

    CAS  PubMed  Google Scholar 

  35. Provenzano DA, Jarzabek G, Georgevich P. The utilization of transcutaneous oxygen pressures to guide decision-making for spinal cord stimulation implantation for inoperable peripheral vascular disease: a report of two cases. Pain Physician. 2008;11(6):909–16.

    Article  PubMed  Google Scholar 

  36. Chapital AD, Yu M, Ho HC, Wang J, Koss W, Takanishi DM Jr. Using transcutaneous oxygen pressure measurements as selection criteria for activated protein C use. J Trauma. 2008;65(1):30–3.

    CAS  PubMed  Google Scholar 

  37. Bouyé P, Picquet J, Jaquinandi V, Enon B, Leftheriotis G, Saumet JL, et al. Reproducibility of proximal and distal transcutaneous oxygen pressure measurements during exercise in stage 2 arterial claudication. Int Angiol. 2004;23(2):114–21.

    PubMed  Google Scholar 

  38. de Graaff JC, Ubbink DT, Legemate DA, Tijssen JG, Jacobs MJ. Evaluation of toe pressure and transcutaneous oxygen measurements in management of chronic critical leg ischemia: a diagnostic randomized clinical trial. J Vasc Surg. 2003;38(3):528–34.

    Article  PubMed  Google Scholar 

  39. Fife CE, Buyukcakir C, Otto GH, Sheffield PJ, Warriner RA, Love TL, et al. The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1,144 patients. Wound Repair Regen. 2002;10(4):198–207.

    Article  PubMed  Google Scholar 

  40. Jörneskog G, Djavani K, Brismar K. Day-to-day variability of transcutaneous oxygen tension in patients with diabetes mellitus and peripheral arterial occlusive disease. J Vasc Surg. 2001;34(2):277–82.

    Article  PubMed  Google Scholar 

  41. Mohler ER, 3rd, Gornik HL, Gerhard-Herman M, Misra S, Olin JW, Zierler E. ACCF/ACR/AIUM/ASE/ASN/ICAVL/SCAI/SCCT/SIR/SVM/SVS 2012 appropriate use criteria for peripheral vascular ultrasound and physiological testing part I: arterial ultrasound and physiological testing: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American College of Radiology, American Institute of Ultrasound in Medicine, American Society of Echocardiography, American Society of Nephrology, Intersocietal Commission for the Accreditation of Vascular Laboratories, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Interventional Radiology, Society for Vascular Medicine, and Society for Vascular Surgery. J Vasc Surg. 2012;56(1):e17–51.

    Google Scholar 

  42. Yip WL. Evaluation of the clinimetrics of transcutaneous oxygen measurement and its application in wound care. Int Wound J. 2015;12(6):625–9.

    Article  PubMed  Google Scholar 

  43. Rosfors S, Kanni L, Nyström T. The impact of transcutaneous oxygen pressure measurement in patients with suspected critical lower limb ischemia. Int Angiol. 2016;35(5):492–7.

    PubMed  Google Scholar 

  44. Ruangsetakit C, Chinsakchai K, Mahawongkajit P, Wongwanit C, Mutirangura P. Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia. J Wound Care. 2010;19(5):202–6.

    Article  CAS  PubMed  Google Scholar 

  45. Leenstra B, Wijnand J, Verhoeven B, Koning O, Teraa M, Verhaar MC, et al. Applicability of transcutaneous oxygen tension measurement in the assessment of chronic limb-threatening ischemia. Angiology. 2020;71(3):208–16.

    Article  PubMed  Google Scholar 

  46. Wagner HJ, Schmitz R, Alfke H, Klose KJ. Influence of percutaneous transluminal angioplasty on transcutaneous oxygen pressure in patients with peripheral arterial occlusive disease. Radiology. 2003;226(3):791–7.

    Article  PubMed  Google Scholar 

  47. Pardo M, Alcaraz M, Ramón Breijo F, Bernal FL, Felices JM, Canteras M. Increased transcutaneous oxygen pressure is an indicator of revascularization after peripheral transluminal angioplasty. Acta Radiol. 2010;51(9):990–3.

    Article  PubMed  Google Scholar 

  48. Arroyo CI, Tritto VG, Buchbinder D, Melick CF, Kelton RA, Russo JM, et al. Optimal waiting period for foot salvage surgery following limb revascularization. J Foot Ankle Surg. 2002;41(4):228–32.

    Article  PubMed  Google Scholar 

  49. Faglia E, Clerici G, Caminiti M, Quarantiello A, Curci V, Morabito A. Predictive values of transcutaneous oxygen tension for above-the-ankle amputation in diabetic patients with critical limb ischemia. Eur J Vasc Endovasc Surg. 2007;33(6):731–6.

    Article  CAS  PubMed  Google Scholar 

  50. Keyzer-Dekker CM, Moerman E, Leijdekkers VJ, Vahl AC. Can transcutaneous oxygen tension measurement determine re-amputation levels? J Wound Care. 2006;15(1):27–30.

    Article  CAS  PubMed  Google Scholar 

  51. Andrews KL, Dib MY, Shives TC, Hoskin TL, Liedl DA, Boon AJ. Noninvasive arterial studies including transcutaneous oxygen pressure measurements with the limbs elevated or dependent to predict healing after partial foot amputation. Am J Phys Med Rehabil. 2013;92(5):385–92.

    Article  PubMed  Google Scholar 

  52. Kim D, Orron DE. Techniques and complications of angiography. In: Kim D, Orron DE, editors. Peripheral vascular imaging and intervention. St. Louis: Mosby-Year Book; 1992. p. 83–109.

    Google Scholar 

  53. Weisberg LS, Kurnik PB, Kurnik BR. Risk of radiocontrast nephropathy in patients with and without diabetes mellitus. Kidney Int. 1994;45(1):259–65.

    Article  CAS  PubMed  Google Scholar 

  54. Hauser CJ, Klein SR, Mehringer CM, Appel P, Shoemaker WC. Superiority of transcutaneous oximetry in noninvasive vascular diagnosis in patients with diabetes. Arch Surg. 1984;119(6):690–4.

    Article  CAS  PubMed  Google Scholar 

  55. Hauser CJ, Klein SR, Mehringer CM, Appel P, Shoemaker WC. Assessment of perfusion in the diabetic foot by regional transcutaneous oximetry. Diabetes. 1984;33(6):527–31.

    Article  CAS  PubMed  Google Scholar 

  56. Modesti PA, Boddi M, Poggesi L, Gensini GF, Neri Serneri GG. Transcutaneous oximetry in evaluation of the initial peripheral artery disease in diabetics. Angiology. 1987;38(6):457–62.

    Article  CAS  PubMed  Google Scholar 

  57. Hauser CJ. Tissue salvage by mapping of skin surface transcutaneous oxygen tension index. Arch Surg. 1987;122(10):1128–30.

    Article  CAS  PubMed  Google Scholar 

  58. Fronek A. Clinical experience with transcutaneous pO2 and pCO2 measurements. In: Bernstein EF, editor. Vascualr diagnosis. St. Louis: Mosby-Year Book; 1993. p. 620–5.

    Google Scholar 

  59. Lalka SG, Malone JM, Anderson GG, Hagaman RM, McIntyre KE, Bernhard VM. Transcutaneous oxygen and carbon dioxide pressure monitoring to determine severity of limb ischemia and to predict surgical outcome. J Vasc Surg. 1988;7(4):507–14.

    Article  CAS  PubMed  Google Scholar 

  60. Ballard JL, Eke CC, Bunt TJ, Killeen JD. A prospective evaluation of transcutaneous oxygen measurements in the management of diabetic foot problems. J Vasc Surg. 1995;22(4):485–90; discussion 90–2.

    Article  CAS  PubMed  Google Scholar 

  61. Weaver ML, Hicks CW, Canner JK, Sherman RL, Hines KF, Mathioudakis N, et al. The Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification system predicts wound healing better than direct angiosome perfusion in diabetic foot wounds. J Vasc Surg. 2018;68(5):1473–81.

    Article  PubMed  Google Scholar 

  62. Hicks CW, Canner JK, Mathioudakis N, Sherman R, Malas MB, Black JH 3rd, et al. The Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification independently predicts wound healing in diabetic foot ulcers. J Vasc Surg. 2018;68(4):1096–103.

    Article  PubMed  Google Scholar 

  63. Darling JD, McCallum JC, Soden PA, Meng Y, Wyers MC, Hamdan AD, et al. Predictive ability of the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification system following infrapopliteal endovascular interventions for critical limb ischemia. J Vasc Surg. 2016;64(3):616–22.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mills JL, Sr., Conte MS, Armstrong DG, Pomposelli FB, Schanzer A, Sidawy AN, et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg. 2014;59(1):220–34.e1–2.

    Google Scholar 

  65. Padberg FT, Back TL, Thompson PN, Hobson RW 2nd. Transcutaneous oxygen (TcPO2) estimates probability of healing in the ischemic extremity. J Surg Res. 1996;60(2):365–9.

    Article  CAS  PubMed  Google Scholar 

  66. Arnold T, Karabinis V, Sano C, Gensler T, Ugaeri H, Samuels L, et al. Revascularized diabetic limbs: positional changes in regional perfusion index. Am Surg. 1993;59(11):746–9.

    CAS  PubMed  Google Scholar 

  67. Hauser CJ, Shoemaker WC. Use of a transcutaneous PO2 regional perfusion index to quantify tissue perfusion in peripheral vascular disease. Ann Surg. 1983;197(3):337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Petrakis E, Sciacca V. Prospective study of transcutaneous oxygen tension (TcPO2) measurement in the testing period of spinal cord stimulation in diabetic patients with critical lower limb ischaemia. Int Angiol. 2000;19(1):18–25.

    CAS  PubMed  Google Scholar 

  69. Fife CE, Smart DR, Sheffield PJ, Hopf HW, Hawkins G, Clarke D. Transcutaneous oximetry in clinical practice: consensus statements from an expert panel based on evidence. Undersea Hyperb Med. 2009;36(1):43–53.

    CAS  PubMed  Google Scholar 

  70. Mathieu D, Mani R. A review of the clinical significance of tissue hypoxia measurements in lower extremity wound management. Int J Low Extrem Wounds. 2007;6(4):273–83.

    Article  PubMed  Google Scholar 

  71. Niezgoda JA, Mewissen M. The management of lower extremity wounds complicated by acute arterial insufficiency and ischemia. Ostomy Wound Manage. 2004;50(5A Suppl):1–11; quiz 2.

    PubMed  Google Scholar 

  72. Niinikoski J. Hyperbaric oxygen therapy of diabetic foot ulcers, transcutaneous oxymetry in clinical decision making. Wound Repair Regen. 2003;11(6):458–61.

    Article  PubMed  Google Scholar 

  73. Grolman RE, Wilkerson DK, Taylor J, Allinson P, Zatina MA. Transcutaneous oxygen measurements predict a beneficial response to hyperbaric oxygen therapy in patients with nonhealing wounds and critical limb ischemia. Am Surg. 2001;67(11):1072–9; discussion 80.

    CAS  PubMed  Google Scholar 

  74. Faglia E, Favales F, Aldeghi A, Calia P, Quarantiello A, Oriani G, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. Diabetes Care. 1996;19(12):1338–43.

    Article  CAS  PubMed  Google Scholar 

  75. Wattel F, Pellerin P, Mathieu D, Patenotre P, Coget JM, Schoofs M, et al. [Hyperbaric oxygen therapy in the treatment of wounds, in plastic and reconstructive surgery]. Ann Chir Plast Esthet. 1990;35(2):141–6.

    Google Scholar 

  76. Mathieu D, Wattel F, Bouachour G, Billard V, Defoin JF. Post-traumatic limb ischemia: prediction of final outcome by transcutaneous oxygen measurements in hyperbaric oxygen. J Trauma. 1990;30(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  77. Pardo M, Alcaraz M, Bernal FL, Felices JM, Achel GD, Canteras M. Transcutaneous oxygen tension measurements following peripheral transluminal angioplasty procedure has more specificity and sensitivity than ankle brachial index. Br J Radiol. 2015;88(1046):20140571.

    Article  CAS  PubMed  Google Scholar 

  78. Schlager O, Gschwandtner ME, Willfort-Ehringer A, Kurz M, Mueller M, Koppensteiner R, et al. Transcutaneous oxygen tension monitoring in critically ill patients receiving packed red blood cells. J Crit Care. 2014;29(6):1057–62.

    Article  PubMed  Google Scholar 

  79. Deng W, Dong X, Zhang Y, Jiang Y, Lu D, Wu Q, et al. Transcutaneous oxygen pressure (TcPO(2)): a novel diagnostic tool for peripheral neuropathy in type 2 diabetes patients. Diabetes Res Clin Pract. 2014;105(3):336–43.

    Article  CAS  PubMed  Google Scholar 

  80. Yang C, Weng H, Chen L, Yang H, Luo G, Mai L, et al. Transcutaneous oxygen pressure measurement in diabetic foot ulcers: mean values and cut-point for wound healing. J Wound Ostomy Continence Nurs. 2013;40(6):585–9.

    Article  PubMed  Google Scholar 

  81. He HW, Liu DW, Long Y, Wang XT. The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation. Crit Care. 2013;17(3):R116.

    Article  PubMed  PubMed Central  Google Scholar 

  82. He HW, Liu DW, Long Y, Wang XT, Chai WZ, Zhou X. The transcutaneous oxygen challenge test: a noninvasive method for detecting low cardiac output in septic patients. Shock. 2012;37(2):152–5.

    Article  PubMed  Google Scholar 

  83. Gazzaruso C, Coppola A, Falcone C, Luppi C, Montalcini T, Baffero E, et al. Transcutaneous oxygen tension as a potential predictor of cardiovascular events in type 2 diabetes: comparison with ankle-brachial index. Diabetes Care. 2013;36(6):1720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Löndahl M, Katzman P, Hammarlund C, Nilsson A, Landin-Olsson M. Relationship between ulcer healing after hyperbaric oxygen therapy and transcutaneous oximetry, toe blood pressure and ankle-brachial index in patients with diabetes and chronic foot ulcers. Diabetologia. 2011;54(1):65–8.

    Article  PubMed  Google Scholar 

  85. de Meijer VE, Van’t Sant HP, Spronk S, Kusters FJ, den Hoed PT. Reference value of transcutaneous oxygen measurement in diabetic patients compared with nondiabetic patients. J Vasc Surg. 2008;48(2):382–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albeir Y. Mousa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mousa, A.Y., Ballard, J.L. (2021). Transcutaneous Oxygen Tension: Principles and Applications. In: AbuRahma, A.F., Perler, B.A. (eds) Noninvasive Vascular Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-030-49616-6_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49616-6_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49616-6

  • Online ISBN: 978-3-030-49616-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics