Skip to main content

Diagnostics and Diagnosis of Late Effects in Childhood Brain Tumour Survivors

  • Chapter
  • First Online:
Late Treatment Effects and Cancer Survivor Care in the Young

Abstract

Primary central nervous system (CNS) tumours account for about 24% of childhood cancers, thereby presenting the most frequent solid tumours and second most frequent malignancies in childhood and adolescence [1, 2]. More than 400 children and adolescents are diagnosed with a CNS tumour in Germany each year. About 95% of them are treated according to prospective, multi-centre therapy optimisation studies or non-interventional registries, respectively, conducted by the German Paediatric Brain Tumour Consortium (HIT-Network) and the European branch of the International Society of Paediatric Oncology (SIOP-E). They collaboratively coordinate trials and reference centres for different childhood brain tumour entities, thereby promoting continuous optimisation of treatment concepts with quality-controlled standards for diagnosis, treatment and supportive care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following abbreviations will be used more than once in this chapter: CBTS childhood brain tumour survivor, CNS central nervous system, HIT Hirntumor (German for “brain tumour”), LE late effect(s), MRI magnetic resonance imaging, QoS quality of survival.

References

  1. Kaatsch P, Grabow D. The German cohort of long-term survivors of childhood cancer. A population-based cohort in the German Childhood Cancer Registry. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55:843–51.

    Article  CAS  Google Scholar 

  2. German Childhood Cancer Registry. Annual report 2013/14. http://www.kinderkrebsregister.de. Last Accessed 16 Feb 2016.

  3. Tallen G, et al. Strategies to improve the quality of survival for childhood brain tumour survivors. Eur J Paediatr Neurol. 19(6):619–39. https://doi.org/10.1016/j.ejpn.2015.07.011. Epub 2015 Jul 26, 2015.

  4. Peris-Bonet R, et al. Childhood central nervous system tumours - incidence and survival in Europe (1978–1997): report from automated childhood cancer information system project. Eur J Cancer. 2006;42:2064–80.

    Article  Google Scholar 

  5. Schuster S, et al. Nachsorge von krebskranken Kindern, Jugendlichen und jungen Erwachsenen—Erkennen, Vermeiden und Behandeln von Spätfolgen. http://www.awmf.org/uploads/tx_szleitlinien/025-003l_S1_Nachsorge_von_krebskranken_Kindern_Jugendlichen_06-2013.pdf. Last Accessed 24 Dec 2015.

  6. Vézina L-G. Imaging of central nervous system tumors in children: advances and limitations. J Child Neurol. 2008;23:1128.

    Article  Google Scholar 

  7. Koeller KK, Henry JM. From the archives of the AFIP. Radiographics. 2001;21:1533.

    Article  CAS  Google Scholar 

  8. Erdem E, et al. Diffusion-weighted imaging and fluid attenuated inversion recovery imaging in the evaluation of primitive neuroectodermal tumors. Neuroradiology. 2001;43:927.

    Article  CAS  Google Scholar 

  9. Fischbein N, et al. Radiologic classification of brain stem tumors: correlation of magnetic resonance imaging appearance with clinical outcome. Pediatr Neurosurg. 1996;24:9.

    Article  CAS  Google Scholar 

  10. Tallen G, et al. Pediatric brain tumors: imaging of late effects in pediatric brain tumor survivors. In: Kauczor HU, Bäuerle T, (eds). Imaging of complications and toxicity following tumor therapy. Medical radiology. Cham: Springer; 2015. ISBN 978-3-319-12840-5. https://doi.org/10.1007/174_2015_1084.

  11. Shaw DW, et al. Asymptomatic recurrence detection with surveillance scanning in children with medulloblastoma. J Clin Oncol. 1997;15:1811.

    Article  CAS  Google Scholar 

  12. Saunders DE, et al. Surveillance neuroimaging of intracranial medulloblastoma in children: how effective, how often, and for how long? J Neurosurg. 2003;99:280.

    Article  Google Scholar 

  13. Zhang J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.

    Article  CAS  Google Scholar 

  14. Paonessa A, et al. Radiological strategy in acute stroke in children. Eur J Radiol. 2010;74(1):77–85.

    Article  Google Scholar 

  15. Latchaw RE, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34(4):1084–104.

    Article  Google Scholar 

  16. Zach, et al. Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neuro-Oncol. 2015;17:457.

    Article  CAS  Google Scholar 

  17. Lemort M, et al. Progress in magnetic resonance imaging of brain tumours. Curr Opin Oncol. 2007;19:616.

    Article  Google Scholar 

  18. Qiu D, et al. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys. 2007;69:846.

    Article  Google Scholar 

  19. Robinson KE, et al. Functional neuroimaging of working memory in survivors of childhood brain tumors and healthy children: associations with coping and psychosocial outcomes. Child Neuropsychol. 2015;21(6):779–802.

    Article  Google Scholar 

  20. Rückriegel SM, et al. Cerebral white matter fractional anisotropy and tract volume as measured by MR imaging are associated with impaired cognitive and motor function in pediatric posterior fossa tumor survivors. Pediatr Blood Cancer. 2015;62(7):1252–8.

    Article  Google Scholar 

  21. Khong P-L, et al. Diffusion-tensor imaging for the detection and quantification of treatment-induced white matter injury in children with medulloblastoma: a pilot study. Am J Neuroradiol. 2003;24:734.

    Google Scholar 

  22. Mabbott DJ, et al. Diffusion tensor imaging of white matter after cranial radiation in children for medulloblastoma: correlation with IQ. Neuro-Oncology. 2006;8:244.

    Article  Google Scholar 

  23. Khong P-L, et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol. 2006;24:884.

    Article  Google Scholar 

  24. Reddick WE, et al. Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer. 2003;97:2512.

    Article  Google Scholar 

  25. Fouladi M, et al. White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol. 2004;22:4551.

    Article  Google Scholar 

  26. Garcia-Puig M, et al. Neurotoxicity due to methotrexate in paediatric patients. Description of the clinical symptoms and neuroimaging findings. Rev Neurol. 2012;54:712.

    Google Scholar 

  27. Ball W, et al. Neurotoxicity of radio/chemotherapy in children: pathologic and MR correlation. AJNR Am J Neuroradiol. 1992;13:761.

    Google Scholar 

  28. Schreiber JE, et al. Examination of risk factors for intellectual and academic outcomes following treatment for pediatric medulloblastoma. Neuro-Oncology. 2014;16:1129–36.

    Article  Google Scholar 

  29. Kirchhoff AC, et al. Occupational outcomes of adult childhood cancer survivors. Cancer. 2011;117:3033–44.

    Article  Google Scholar 

  30. Spiegler BJ, et al. Comparison of long-term neurocognitive outcomes in young children with acute lymphoblastic leukemia treated with cranial radiation or high-dose or very high-dose intravenous methotrexate. J Clin Oncol. 2006;24:3858–64.

    Article  CAS  Google Scholar 

  31. Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers. Version 2.0. CureSearch Children’s Oncology Group; 2006.

    Google Scholar 

  32. Mitby P, et al. Utilization of special education services and educational attainment among long-term survivors of childhood cancer. Cancer. 2003;97:1115–25.

    Article  Google Scholar 

  33. Ottensmeier H, et al. Neuropsychological short assessment of disease- and treatment-related intelligence deficits in children with brain tumours. Eur J Paediatr Neurol. 2015;19:298–307.

    Article  Google Scholar 

  34. von Bueren AO, et al. Dose reduction of vincristine in children with medulloblastoma treated in the maintenance arm of the prospective multicenter trial HIT’91. Klin Padiatr. 2009;221:396–7.

    Google Scholar 

  35. Langholz B, et al. Dactinomycin and vincristine toxicity in the treatment of childhood cancer: a retrospective study from the Children’s Oncology Group. Pediatr Blood Cancer. 2011;57:252–7.

    Google Scholar 

  36. Schneider WJ, McGrew K. The Cattell-Horn-Carroll model of intelligence. In: Flanagan D, Harrison P, editors. Contemporary intellectual assessment: theories, tests, and issues. 3rd ed. New York: Guilford; 2012. p. 99–144.

    Google Scholar 

  37. Falangan DP, et al. Essentials of cross-battery assessment. 3rd ed. Hoboken, NJ: Wiley; 2013.

    Google Scholar 

  38. Limond JA, et al. Quality of survival assessment in European childhood brain tumour trials, for children aged 5 years and over. J Pediatr Neurol. 2015;19:202–10.

    Article  Google Scholar 

  39. Mulhern RK, et al. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004;5:399–408.

    Article  Google Scholar 

  40. Koustenis E, et al. Executive function deficits in pediatric cerebellar tumor survivors. Eur J Paediatr Neurol. 2015;20:25. https://doi.org/10.1016/j.ejpn.2015.11.001.

    Article  Google Scholar 

  41. Thomas-Teinturier C, Salenave S. Endocrine sequelae after treatment of pediatric cancer: from childhood to adulthood. Bull Cancer. 2015;102(7–8):612–21. https://doi.org/10.1016/j.bulcan.2015.03.013. Epub 2015 May 14.

    Article  Google Scholar 

  42. Müller HL. Diagnostics, treatment, and follow-up in craniopharyngioma. Front Endocrinol (Lausanne). 2011;2:70.

    Article  Google Scholar 

  43. Clement SC, et al. High prevalence of early hypothalamic-pituitary damage in childhood brain tumor survivors: need for standardized follow-up programs. Pediatr Blood Cancer. 2014;61:2285. https://doi.org/10.1002/pbc.25176.

    Article  Google Scholar 

  44. Denzer C, et al. S3-Leitlinie Endokrinologische Nachsorge nach onkologischen Erkrankungen im Kindes- und Jugendalter. http://www.awmf.org/uploads/tx_szleitlinien/025-030l_S3_Endokrinologische_Nachsorge_nach_onkologischen_Erkrankungen_Kindes_Jugendalter_2014_03.pdf. last Accessed Mar 2016.

  45. Packer RJ, et al. Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: childhood cancer survivor study. J Clin Oncol. 2003;21(17):3255–61.

    Article  Google Scholar 

  46. Piscione PJ, et al. Physical functioning in pediatric survivors of childhood posterior fossa brain tumors. Neuro Oncol. 2014;16(1):147–55.

    Article  Google Scholar 

  47. National Cancer Institute. Common terminology. Criteria for Adverse Events, Version 3.0. http://ctep.cancer.gov/forms/CTCAEv3.pdf. Last Accessed 24 Dec 2015.

  48. Knight KR, et al. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23:8588–96.

    Article  Google Scholar 

  49. Zuur CL, et al. Ototoxicity in a randomized phase III trial of intra-arterial compared with intravenous cisplatin chemoradiation in patients with locally advanced head and neck cancer. J Clin Oncol. 2007;25:3759–65.

    Article  CAS  Google Scholar 

  50. Gupta AA, et al. Low incidence of ototoxicity with continuous infusion of cisplatin in the treatment of pediatric germ cell tumors. J Pediatr Hematol Oncol. 2006;28:91–4.

    Article  CAS  Google Scholar 

  51. Kushner BH, et al. Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer. 2006;107:417–22.

    Article  CAS  Google Scholar 

  52. Brock PR, et al. Cisplatin ototoxicity in children: a practical grading system. Med Pediatr Oncol. 1991;19:295–300.

    Article  CAS  Google Scholar 

  53. Chang KW, Chinosornvatana N. Practical grading system for evaluating cisplatin ototoxicity in children. J Clin Oncol. 2010;28:1788–96.

    Article  CAS  Google Scholar 

  54. Kaste SC, et al. Impact of radiation and chemotherapy on risk of dental abnormalities: a report from the Childhood Cancer Survivor Study, 2009. Cancer. 2009;115(24):5817–27.

    Article  Google Scholar 

  55. Neglia JP, et al. Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst. 2001;93:618–29.

    Article  CAS  Google Scholar 

  56. Lanni G, et al. Pediatric stroke: clinical findings and radiological approach. Stroke Res Treat. 2011;2011:1. https://doi.org/10.4061/2011/172168.

    Article  Google Scholar 

  57. Aoki S, et al. Radiation-induced arteritis: thickened wall with prominent enhancement on cranial MR images report of five cases and comparison with 18 cases of Moyamoya disease. Radiology. Jun, 2002;223:683.

    Article  Google Scholar 

  58. Anderson N, et al. Superficial siderosis of the central nervous system: a late complication of cerebellar tumors. Neurology. 1999;52:163.

    Article  CAS  Google Scholar 

  59. McCarron MO, et al. Superficial siderosis of the central nervous system many years after neurosurgical procedures. J Neurol Neurosurg Psychiatry. 2003;74:1326.

    Article  CAS  Google Scholar 

  60. Shuper A, et al. ‘Complicated migraine-like episodes’ in children following cranial irradiation and chemotherapy. Neurology. 1995;45:1837.

    Google Scholar 

  61. Armstrong AE, et al. SMART syndrome (stroke-like migraine attacks after radiation therapy) in adult and pediatric patients. J Child Neurol. 2014;29:336.

    Article  Google Scholar 

  62. Partap S. Stroke and cerebrovascular complications in childhood cancer survivors. Semin Pediatr Neurol. 2012;19:18.

    Article  Google Scholar 

  63. Koike S, et al. Asymptomatic radiation-induced telangiectasia in children after cranial irradiation: frequency, latency, and dose relation. Radiology. 2004;230:93.

    Article  Google Scholar 

  64. Burn S, et al. Incidence of cavernoma development in children after radiotherapy for brain tumors. J Neurosurg. 2007;106:379.

    Google Scholar 

  65. Strenger V, et al. Incidence and clinical course of radionecrosis in children with brain tumors. Strahlenther Onkol. 2013;189:759.

    Article  CAS  Google Scholar 

  66. Ruben JD, et al. Cerebral radiation necrosis: Incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys. 2006;65:499.

    Article  Google Scholar 

  67. Kumar AJ, et al. Malignant gliomas: MR imaging spectrum of radiation therapy and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377.

    Article  CAS  Google Scholar 

  68. Rabin BM, et al. Radiation-induced changes in the central nervous system and head and neck. Radiographics. 1996;16:1055.

    Article  CAS  Google Scholar 

  69. Tan H, et al. Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med. 2011;36:978.

    Article  Google Scholar 

  70. Brandsma D, et al. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453.

    Article  Google Scholar 

  71. Kellie SJ, et al. Late magnetic resonance imaging features of leukoencephalopathy in children with central nervous system tumours following high-dose methotrexate and neuraxis radiation therapy. Eur J Cancer. 2005;41:1588.

    Article  Google Scholar 

  72. Rueckriegel SM, et al. Differences in supratentorial damage of white matter in pediatric survivors of posterior fossa tumors with and without adjuvant treatment as detected by magnetic resonance diffusion tensor imaging. Int J Radiat Oncol Biol Phys. 2010;76:859.

    Article  Google Scholar 

  73. Rueckriegel SM, et al. Supratentorial neurometabolic alterations in pediatric survivors of posterior fossa tumors. Int J Radiat Oncol Biol Phys. 2012;82:1135.

    Article  Google Scholar 

  74. Soelva V, et al. Fronto-cerebellar fiber tractography in pediatric patients following posterior fossa tumor surgery. Childs Nerv Syst. Apr, 2013;29:597.

    Article  Google Scholar 

  75. Avula S, et al. Diffusion abnormalities on intraoperative magnetic resonance imaging as an early predictor for the risk of posterior fossa syndrome. Neuro-Oncology. 2015;17:614.

    Article  Google Scholar 

  76. Wilson C, et al. Brain tumors: criteria of response and definition of recurrence. Natl Cancer Inst Monogr. 1977;46:197.

    CAS  Google Scholar 

  77. Chamberlain MC. Pediatric leptomeningeal metastases: outcome following combined therapy. J Child Neurol. 1997;12:53.

    Article  CAS  Google Scholar 

  78. Packer R, et al. Leptomeningeal dissemination of primary central nervous system tumors of childhood. Ann Neurol. 1985;18:217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesche Tallen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tallen, G., Mynarek, M., Tischler, T., Weller, M., Rutkowski, S. (2021). Diagnostics and Diagnosis of Late Effects in Childhood Brain Tumour Survivors. In: Beck, J.D., Bokemeyer, C., Langer, T. (eds) Late Treatment Effects and Cancer Survivor Care in the Young. Springer, Cham. https://doi.org/10.1007/978-3-030-49140-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49140-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49138-3

  • Online ISBN: 978-3-030-49140-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics