Skip to main content

Evaluation of Human Bones Load Bearing Capacity with the Limit Analysis Theory

  • Chapter
  • First Online:
Direct Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 95))

Abstract

The present study investigates on the possibility of applying the Limit Analysis structural theory to predict a lower bound to the peak/collapse load of human bones. Such a prediction can be useful to prevent skeletal diseases, osteoporosis and bones fractures; a problem of great interest in biomechanics and of relevant socio-economic impact in modern societies. A constitutive model of Tsai-Wu-type in principal stress space is assumed for the human bone modelled in 3D and viewed, at a macroscopic level, as a structural element made of a composite anisotropic material. Simple numerical tests on in-silico idealized specimens of human femur are performed, analyzed and critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cowin, S.C.: Bone Mechanics Handbook, 2nd edn. CRC Press, New York, NY (2001)

    Google Scholar 

  2. Klika, V.: Theoretical biomechanics. Intechopen (2011). https://doi.org/10.5772/816

    Article  Google Scholar 

  3. Martin, B.R., Burr, D.B., Sharkey, N.A., Fyhrie, D.P.: Skeletal Tissue Mechanics. Springer, New York, NY (2015)

    Google Scholar 

  4. Murphy, W., Black, J., Hasting, G.: Handbook of Biomaterial Properties, 2nd edn. Springer, New York, NY (2016)

    Google Scholar 

  5. Huiskes, R., Chao, E.Y.S.: A survey of finite element analysis in orthopedic biomechanics: the first decade. J. Biomech. 16(6), 385–409 (1983)

    Google Scholar 

  6. Zysset, P.K., Dall’Ara, E., Varga, P., Pahr, D.H.: Finite element analysis for prediction of bone strength. BoneKEy Reports 2, Article number: 386 (2013)

    Google Scholar 

  7. Ruffoni, D., van Lenthe, G.H.: Finite element analysis in bone research: a computational method relating structure to mechanical function. In: Comprehensive Biomaterials II, 2nd edn, Elsevier (2017)

    Google Scholar 

  8. Fuschi, P., Pisano, A.A, Weichert, D.: Direct Methods for Limit and Shakedown Analysis of Structures: Advanced Computational Algorithms and Material Modelling. Springer International Publishing Switzerland (2014)

    Google Scholar 

  9. Mackenzie, D., Boyle, J.T.: A method of estimating limit loads by iterative elastic analysis. I-Simple examples. Int. J. Press. Vessels Pip. 53(1), 77–95 (1993)

    Google Scholar 

  10. Mackenzie, D., Shi, J., Boyle, J.T.: Finite element modelling for limit analysis by the elastic compensation method. Comput. Struct. 51(4), 403–410 (1994)

    MATH  Google Scholar 

  11. Pisano, A.A., Fuschi, P.: A numerical approach for limit analysis of orthotropic composite laminates. Int. J. Numer. Methods Eng. 70, 71–93 (2007)

    MATH  Google Scholar 

  12. Pisano, A.A., Fuschi, P., De Domenico, D.: A layered limit analysis of pinned-joint composite laminates: numerical versus experimental findings. Compos. Part B: Eng. 43, 940–952 (2012)

    Google Scholar 

  13. Pisano, A.A., Fuschi, P., De Domenico, D.: Peak load prediction of multi-pin joints FRP laminates by limit analysis. Compos. Struct. 96, 763–772 (2013)

    Google Scholar 

  14. Pisano, A.A., Fuschi, P., De Domenico, D.: Peak loads and failure modes of steel-reinforced concrete beams: predictions by limit analysis. Eng. Struct. 56, 477–488 (2013)

    Google Scholar 

  15. De Domenico, D., Pisano, A.A., Fuschi, P.: A FE-based limit analysis approach for concrete elements reinforced with FRP bars. Compos. Struct. 107, 594–603 (2014)

    Google Scholar 

  16. Pisano, A.A., Fuschi, P., De Domenico, D.: Numerical limit analysis of steel-reinforced concrete walls and slabs. Comput. Struct. 160, 42–55 (2015)

    Google Scholar 

  17. Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Medical Eng. Phys. 20(2), 92–102 (1998)

    Google Scholar 

  18. Weiner, S., Wagner, H.D.: The material bone: structure-mechanical function relations. Ann. Rev. Mater. Sci. 28(1), 271–298 (1998)

    Google Scholar 

  19. Hernandez, C.J.: Cancellous bone. In: Murphy, W., et al. (eds.) Handbook of Biomaterial Properties (Chapter A2). Springer Science + Business Media, New York (2016)

    Google Scholar 

  20. Currey, J.: Cortical bone. In: Murphy, W., et al. (eds.) Handbook of Biomaterial Properties (Chapter A1) Springer Science + Business Media New York (2016)

    Google Scholar 

  21. Beaupied, H., Lespessailles, E., Benhamou, C.-L.: Evaluation of macrostructural bone biomechanics. Joint Bone Spine 74(3), 233–239 (2007)

    Google Scholar 

  22. Rincón-Kohli, L., Zysset, P.K.: Multi-axial mechanical properties of human trabecular bone. Biomech. Model. Mechanobio. 8(3), 195–208 (2009)

    Google Scholar 

  23. Taghizadeh, E., Reyes, M., Zysset, P., Latypova, A., Terrier, A., Büchler, P.: Biomechanical role of bone anisotropy estimated on clinical CT scans by image registration. Ann. Biomed. Eng. 44(8), 2505–2517 (2016)

    Google Scholar 

  24. Mirzaali, M.J., Schwiedrzik, J.J., Thaiwichai, S., Best, J.P., Michler, J., Zysset, P.K., Wolfram, U.: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93, 196–211 (2016)

    Google Scholar 

  25. Schwiedrzik, J.J., Mirzaali, M.J., Thaiwichai, S., Best, J.P., Michler, J., Zysset, P.K., Wolfram, U.: Response to the commentary on mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 105, 312–314 (2017)

    Google Scholar 

  26. Wolfram, U., Wilke, H.J., Zysset, P.K.: Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. J. Biomech. 43(9), 1731–1737 (2010)

    Google Scholar 

  27. Zysset, P.K., Curnier, A.: A 3D damage model for trabecular bone based on fabric tensors. J. Biomech. 29(12), 1549–1558 (1996)

    Google Scholar 

  28. Fondrk, M.T., Bahniuk, E.H., Davy, D.T.: A damage model for nonlinear tensile behavior of cortical bone. J. Biomech. Eng. 121(5), 533–541 (1999)

    Google Scholar 

  29. Keaveny, T.M., Morgan, E.F., Niebur, G.L., Yeh, O.C.: Biomechanics of trabecular bone. Ann. Rev. Biomed. Eng. 3(1), 307–333 (2001)

    Google Scholar 

  30. Garcia, D., Zysset, P.K., Charlebois, M., Curnier, A.: A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech. Model. Mechanobiol. 8(2), 149–165 (2009)

    MATH  Google Scholar 

  31. Doblaré, M., García, J.M., Gómez, M.J.: Modelling bone tissue fracture and healing: a review. Eng. Fract. Mech. 71, 1809–1840 (2004)

    Google Scholar 

  32. Keaveny, T.M., Wachtel, E.F., Zadesky, S.P., Arramon, Y.P.: Application of the Tsai-Wu Quadric Multiaxial Failure Criterion to Bovine Trabecular Bone. J. Biomech. Eng. 121, 99–107 (1999)

    Google Scholar 

  33. Zysset, P.K.: A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J. Biomech. 36, 1469–1485 (2003)

    Google Scholar 

  34. Bayraktar, H.H., Gupta, A., Kwon, R.Y., Papadopoulos, P., Keaveny, T.M.: The modified super-ellipsoid yield criterion for human trabecular bone. J. Biomech. Eng. 126(6), 677–684 (2004)

    Google Scholar 

  35. Tellache, M., Pithioux, M., Chabrand, P., Hochard, C.: Femoral neck fracture prediction by anisotropic yield criteria. Revue Europénne de Mécanique Numérique/Europ. J. Comput. Mech. Hermès/Paris: Lavoisier 18(1), 33–41 (2009)

    MATH  Google Scholar 

  36. Wolfram, U., Gross, T., Pahr, D.H., Schwiedrzik, J., Wilke, H.J., Zysset, P.K.: Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space. J. Mech. Behav. Biomed. Mater. 15, 218–228 (2012)

    Google Scholar 

  37. Hayes, W.C., Wright, T.M.: An empirical strength theory for compact bone. Fracture 3, 1173–1179 (1977)

    Google Scholar 

  38. Cezayirlioglu, H., Bahniuk, E., Davy, D.T., Heiple, G.: Anisotropic yield behavior of bone under combined axial force and torque. J. Biomech. 18(1), 61–69 (1985)

    Google Scholar 

  39. Carnelli, D., Gastaldi, D., Sassi, V., Contro, R., Ortiz, C., Vena, P.: A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. J. Biomech. Eng. 132, 081008-1–10 (2010)

    Google Scholar 

  40. Carnelli, D., Lucchini, R., Ponzoni, M., Contro, R., Vena, P.: Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. J. Biomech. 44(10), 1852–1858 (2011)

    Google Scholar 

  41. Cowin, S.C.: The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4, 137–147 (1985)

    Google Scholar 

  42. Cowin, S.C.: Fabric dependence of an anisotropic strength criterion. Mech. Mater. 5, 251–260 (1986)

    Google Scholar 

  43. Matsuura, M., Eckstein, F., Lochmüller, E.M., Zysset, P.K.: The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech. Model. Mechanobiol. 7, 27–42 (2008)

    Google Scholar 

  44. Tabor, Z.: On the equivalence of two methods of determining fabric tensor. Medical Eng. Phys. 31, 1313–1322 (2009)

    Google Scholar 

  45. Schwiedrzik, J.J., Wolfram, U., Zysset, P.K.: A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech. Model. Mechanobio. 12(6), 1155–1168 (2013)

    Google Scholar 

  46. Charlebois, M., Jirásek, M., Zysset, P.K.: A nonlocal constitutive model for trabecular bone softening in compression. Biomech. Model. Mechanobiol. 9(5), 597–611 (2010)

    Google Scholar 

  47. Hosseini, H.S., Horák, M., Zysset, P.K., Jirásek, M.: An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains. Int. J. Numer. Methods Biomed. Eng. 31(11), 1–32 (2015)

    MathSciNet  Google Scholar 

  48. Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P.: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115–2123 (2004)

    Google Scholar 

  49. Gupta, H.S., Fratzl, P., Kerschnitzki, M., Benecke, G., Wagermaier, W., Kirchner, H.O.K.: Evidence for an elementary process in bone plasticity with an activation entalphy of 1 eV. J. R. Soc. 4, 277–282 (2007)

    Google Scholar 

  50. Ritchie, R.O., Buehler, M.J., Hansma, P.: Plasticity and toughness in bone. Phys. Today 62(6), 41–47 (2009)

    Google Scholar 

  51. Zimmermann, E.A., Schaible, E., Bale, H., Barth, H.D., Tang, S.Y., Reichert, P., Busse, B., Alliston, T., Ager, J.W., Ritchie, R.O.: Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc. Nat. Acad. Sci. 108(35), 14416–14421 (2011)

    Google Scholar 

  52. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Google Scholar 

  53. Wirtz, D.C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., Forst, R.: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of proximal femur. J. Biomech. 33, 1325–1330 (2000)

    Google Scholar 

  54. Lotz, J.C., Gerhart, T.N., Hayes, W.C.: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J. Comput. Assis. Tomogra. 14, 107–114 (1990)

    Google Scholar 

  55. Lotz, J.C., Gerhart, T.N., Hayes, W.C.: Mechanical properties of metaphyseal bone in the proximal femur. J. Biomech. 24, 317–329 (1991)

    Google Scholar 

  56. Turner, C.H., Wang, T., Burr, D.B.: Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif. Tissue Int. 69, 373–378 (2001)

    Google Scholar 

  57. Sanyal, A., Gupta, A., Bayraktar, H.H., Kwon, R.Y., Keaveny, T.M.: Shear strength behavior of human trabecular bone. J. Biomech. 45, 2513–2519 (2012)

    Google Scholar 

  58. Salençon, J.: Applications of the Theory of Plasticity in Soil Mechanics. Wiley, Chichester, England (1977)

    Google Scholar 

  59. Lubliner, J.: Plasticity Theory. Macmillan Publishing Company, New York, NY (1990)

    MATH  Google Scholar 

  60. World Nuclear Association: Non-Linear Analysis Design Rules, Part 1: Code Comparison, Cooperation in Reactor Design Evaluation and Licensing Mechanical Codes and Standards Task Force. Report No.2017/002 (2017)

    Google Scholar 

  61. Ponter, A.R.S., Carter, K.F.: Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus. Comput. Methods Appl. Mech. Eng. 140, 237–258 (1997)

    MATH  Google Scholar 

  62. Mackenzie, D., Boyle, J.T., Hamilton, R.: The elastic compensation method for limit and shakedown analysis: a review. J. Strain Anal. 35(3), 171–188 (2000)

    Google Scholar 

  63. Ponter, A.R.S.: Direct methods derived from linear solution methods with spatial variation of moduli. In: Proceedings 8th World Congress on Computational Mechanics (WCCM8). June 30–July 5, 2008, Venice, Italy (2008)

    Google Scholar 

  64. ADINA R&D, Inc.: Theory and Modeling Guide. Adina R&D: Watertown, MA, USA (2002)

    Google Scholar 

  65. San, Antonio T., Ciaccia, M., Müller-Karger, C., Casanova, E.: Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Medical Eng. Phys. 34, 914–919 (2012)

    Google Scholar 

  66. Huiskes, H.W.J., Janssen, J.D., Slooff, T.J.J.H.: A detailed comparison of experimental and theoretical stress-analysis of a human femur. In: Mechanical Properties of Bone (ASME) American Society of Mechanical Engineers, vol. 45, pp. 211–234 (1983)

    Google Scholar 

  67. Lennon, A.B., Prendergast, P.J.: Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants. J. Biomech. Eng. 123, 623–628 (2001)

    Google Scholar 

  68. Yang, K.H., Shen, K.-L., Demetropoulos, C.K., King, A.I., Kolodziej, P., Levine, R.S., Fitzgerald Jr., R.H.: The relationship between loading conditions and fracture patterns of the proximal femur. J. Biomech. Eng. 118, 575–578 (1996)

    Google Scholar 

  69. Dall’Ara, E., Luisier, B., Schmidt, R., Pretterklieber, M., Kainberger, F., Zysset, P., Pahr, D.: DXA predictions of human femoral mechanical properties depend on the load configuration. Medical Eng. Phys. 35, 1564–1572 (2013)

    Google Scholar 

  70. Ponter, A.R.S., Fuschi, P., Engelhardt, M.: Limit analysis for a general class of yield conditions. Europ. J. Mech. A/Sol. 19, 401–421 (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Angela Pisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pisano, A.A., Fuschi, P. (2021). Evaluation of Human Bones Load Bearing Capacity with the Limit Analysis Theory. In: Pisano, A., Spiliopoulos, K., Weichert, D. (eds) Direct Methods. Lecture Notes in Applied and Computational Mechanics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-48834-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48834-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48833-8

  • Online ISBN: 978-3-030-48834-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics