Skip to main content

Halotolerant Microorganism Reclamation Industry for Salt-Dominant Soils

  • Chapter
  • First Online:
Microbiota and Biofertilizers

Abstract

The extent of salinization of environmental resources affects almost 1 billion hectares worldwide (7% of the total continental area of planet earth). Salt-affected area numbers are escalating due to intrusion of saline water in arable land in coastal areas besides increased evaporation rates and decreased rainfall rates. Agricultural crops are usually intolerant to salinity. The bacterial domain halophiles are usually considered moderately tolerant and are a good choice for reclamation of salt affected soils. The presence of Bacillus species in plant root zone changes the metabolism of stressed plants and accelerates plant development. Salt-stressed plant with Bacillus increases plant growth, water, nutrients (nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, manganese, copper, and iron), antioxidants, and pigments plus hormones (IAA and GA) and reduces the Na, Cl, and ABA plus caspase activity which is responsible for programmed death of cells during stress conditions. Plant growth promoter bacteria’s like rhizobacteria reduce the level of ethylene, restricts Na+ uptake, increases K+ and Ca2+ uptake, regulates sodium transport, increases exopolysaccharide production, and enhances enzymatic activity and phytoharmonic activity. Genetically engineered crops with salt-tolerant genes can be used in salt-affected areas for crop production. A positive influence in nutrient cycling by halotolerant microorganisms in salt-effected soils could be boon for plants under such environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aliasgharzadeh N, Rastin NS, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils in the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2001) Salt stress response of salt-sensitive and tolerant durum wheat cultivars inoculated with mycorrhizal fungi. Acta Agron Hung 49:25–34

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7. https://doi.org/10.1016/j.scienta.2006.02.019

    Article  Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276

    Article  CAS  Google Scholar 

  • Arora S, Trivedi R, Rao GG (2012) Bioremediation of coastal and inland salt affected soils using halophilic soil microbes. Salinity News 18(2):3

    Google Scholar 

  • Arora S, Trivedi R, Rao GG (2013) Bioremediation of coastal and inland salt affected soils using halophyte plants and halophilic soil microbes, CSSRI annual report 2012–13. CSSRI, Karnal, pp 94–100

    Google Scholar 

  • Arora S, Vanza MJ, Mehta R, Bhuva C, Patel PN (2014) Halophilic microbes for bio-remediation of salt affected soils. Afr J Microbiol Res 8(33):3070–3078

    Article  CAS  Google Scholar 

  • Arora S, Singh YP, Mishra VK, Singh AK, Sharma DK (2015) Integrated effect of press mud, chemical amendments and microbial bio-inoculant on sodic soil reclamation and productivity of rice wheat. In: Bhan S, Arora S (eds) Advances in soil and water resource management for food and livelihood security in changing climate. SCSI, New Delhi, pp 519–528

    Google Scholar 

  • Asghari HR (2008) Vesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedlings. Int J Plant Prod 2:243–256

    CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162. https://doi.org/10.1007/s00374-004-0766-y

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Bhoopander G, Mukerji KG (1999) Improved growth and productivity of Sesbania grandiflora (Pers) under salinity stress through mycorrhizal technology. J Phytol Res 12:35–38

    Google Scholar 

  • Bhuva C, Arora S, Rao GG (2013) Efficacy of halophilic microbes for salt removal from coastal saline soils. National Seminar with the theme “Microbes and human welfare”, Bharathi dasan University, Tiruchirappalli, India

    Google Scholar 

  • Cantrel IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11(2):80–88

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Essghaier B, Dhieb C, Rebib H, Ayari S, Boudabous ARA, Sadfi-Zouaoui N (2014) Antimicrobial behavior of intracellular proteins from two moderately halophilic bacteria: strain J31 of Terribacillus halophilus and strain M3-23 of Virgi bacillus marismortui. J Plant Pathol Microbiol 5:214

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezz T, Nawar A (1994) Salinity and mycorrhizal association in relation to carbohydrate status, leaf chlorophyll and activity of peroxidase and polyphenol oxidase enzymes in sour orange seedlings. Alex J Agric Res 39:263–280

    Google Scholar 

  • Feng G, Yang M, Bai D (1998) Influence of VAM fungi on mineral elements concentration and composition in Bromus inermis under salinity stress. Acta Pratacul Sin 7:21–28

    Google Scholar 

  • Fisher RA, Turner NC (1978) Plant productivity in the arid and semi-arid zones. Annu Rev Plant Biol 29:277–317

    Article  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. https://doi.org/10.1016/j.micres.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics:1–19. https://doi.org/10.1155/2014/701596

  • Han Y, Zhang B, Shen Q, You C, Yu Y, Li P (2015) Purification and identification of two antifungal cyclic peptides produced by Bacillus amyloliquefaciens L-H15. Appl Biochem Biotechnol 176:2202–2212. https://doi.org/10.1007/s12010-015-1708-x

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527(1–3):176–180

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, AlHuqail AA, Alshalawi SRM, Wirth S (2015) Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown udder salt stress. Pak J Bot 47:1735–1741

    Google Scholar 

  • Islam MZ, Sattar MA, Doaa MM, Shamsuddoha ATM (2013) Evaluating some salinity tolerant rhizobacterial strains to lentil production under salinity stress. Int J Agric Biol 15:499–504

    Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20(2):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 87–89

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2014) The interactions of soil microbes, arbuscular mycorrhizal Fungi and N-fixing bacteria, rhizobium, under different conditions including stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 2. Springer, New York

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigation on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63(1):225–232

    Article  CAS  Google Scholar 

  • Navakoudis E, Lutz C, Langebartels C, Lutz-Meindl U, Kotzabasis K (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. BBA-Gen Subjects 1621(2):160–169

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms, environments, phylogeny, physiology and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47(3):621–627. https://doi.org/10.1016/j.bjm.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D (2012) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 52:1–10

    Google Scholar 

  • Qurashi AW, Sabri AN (2013) Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pak J Bot 45:1011–1016

    CAS  Google Scholar 

  • Rabie GH, Aboul-Nasr MB, Al-Humiany A (2005) Increase salinity tolerance of cowpea plants by dual inoculation of AM fungus Glomus clarum and nitrogen-fixer Azospirillum brasilense. Mycobiology 33(1):51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd-Allah EF (2017) Bacillus-induced stress mitigation in crop plants. Front Physiol 8(667):1–14

    Google Scholar 

  • Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168(3):583–591

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168(4):317–328

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  CAS  Google Scholar 

  • Santos BA, Maia LC, Cavalcante UMT, Correia MTS, Coelo LCBB (2001) Effect of arbuscular mycorrhizal fungi and soil phosphorus level on expression of protein and activity of peroxidase on passion fruit roots. Braz J Biol 61:693–700

    Article  CAS  PubMed  Google Scholar 

  • Sapsirisopa S, Chookietwattana K, Maneewan K, Khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. Asian J Food Ag-Ind 2:S69–S74

    Google Scholar 

  • Saravana Kumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith A (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Tisi A, Angelini R, Cona A (2008) Wound healing in plants: cooperation of copper amine oxidase and flavin-containing polyamine oxidase. Plant Signal Behav 3(3):204–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916. https://doi.org/10.1007/s00374-011-0598-5

    Article  CAS  Google Scholar 

  • Trivedi R, Sanjay A (2013) Characterization of acid and salt tolerant rhizobium sp. isolated from saline soils of Gujarat. Int Res J Chem 3(3):8–13

    Google Scholar 

  • Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164(8):1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Bernard SM, Anderson GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yensen NP (2008) Halophyte uses for the twenty-first century. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 367–396

    Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:731–744

    Article  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, S.A., Dijoo, Z.K., Bhat, R.A., Ali, M.T. (2021). Halotolerant Microorganism Reclamation Industry for Salt-Dominant Soils. In: Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A. (eds) Microbiota and Biofertilizers. Springer, Cham. https://doi.org/10.1007/978-3-030-48771-3_12

Download citation

Publish with us

Policies and ethics