Skip to main content

Purple Acid Phosphatases (PAPs): Molecular Regulation and Diverse Physiological Roles in Plants

  • Chapter
  • First Online:
Protein Phosphatases and Stress Management in Plants

Abstract

Purple acid phosphatases (PAPs) represent the largest group of acid phosphatases (APases) that hydrolyze phosphorus from phosphate monoesters/anhydrides. PAPs exist as a multigene family in nearly all plant species and have been widely characterized for their roles in tolerance to phosphate (Pi) deficiency. PAPs are majorly involved in Pi uptake and recycling, thus influencing Pi acquisition and utilization efficiency of plants. Posttranscriptional and posttranslational regulation of PAPs is a complex phenomenon involving several key regulators. Though most of the PAPs are low Pi inducible, Pi deficiency is not found to affect the expression of few PAPs. Functional analysis of these PAPs uncovered their diverse functional roles. Apart from low Pi tolerance, several studies indicate broad functions of PAPs in the regulation of seed traits, root development, osmotic, oxidative, and salt stress tolerance. This chapter provides more in-depth understanding and insights into the broader physiological functions of PAPs in plants and their molecular regulation and finally, discusses their possible deployment in crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anuradha K, Pampapathy K, Narayana N (1990) Effect of nitrogen and phosphorus on flowering, yield and quality of marigold. Indian J Hort 47:353–357

    Google Scholar 

  • Bhadouria J, Singh AP, Mehra P, Verma L, Srivastawa R, Parida S, Giri J (2017) Identification of purple acid phosphatases in chickpea and potential roles of CaPAP7 in seed phytate accumulation. Sci Rep 7:11012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bozzo GG, Raghothama KG, Plaxton WC (2002) Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Eur J Biochem 269:6278–6286

    Article  CAS  PubMed  Google Scholar 

  • Bozzo GG, Singh VK, Plaxton WC (2004) Phosphate or phosphite addition promotes the proteolytic turnover of phosphate-starvation inducible tomato purple acid phosphatase isozymes. FEBS Lett 573:51–54

    Article  CAS  PubMed  Google Scholar 

  • Bozzo GG, Dunn EL, Plaxton WC (2006) Differential synthesis of phosphate starvation inducible purple acid phosphatase isozymes in tomato (Lycopersicon esculentum) suspension cells and seedlings. Plant Cell Environ 29:303–313

    Article  CAS  PubMed  Google Scholar 

  • Cashikar AG, Kumaresan R, Rao NM (1997) Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase. Plant Physiol 114:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Pozo JC, Allona I, Rubio V, Leyva A, de la Pena A, Aragoncillo C, Paz-Ares J (1999) A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/oxidative stress conditions. Plant J 19:579–589

    Article  PubMed  Google Scholar 

  • Del Vecchio HA, Ying S, Park J, Knowles VL, Kanno S, Tanoi K, She YM, Plaxton WC (2014) The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation. Plant J 80:569–581

    Article  PubMed  CAS  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007b) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dionisio G, Madsen CK, Holm PB, Welinder KG, Jørgensen M, Stoger E, Arcalis E, Brinch-Pedersen H (2011) Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol 156:1087–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doerner P (2008) Phosphate starvation signaling: a threesome controls systemic Pi homeostasis. Curr Opin Plant Biol 11:536–540

    Article  CAS  PubMed  Google Scholar 

  • Duff SM, Lefebvre DD, Plaxton WC (1989) Purification and characterization of a phosphoenolpyruvate phosphatase from Brassica nigra suspension cells. Plant Physiol 90:734–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Dwivedi V, Parida SK, Chattopadhyay D (2017) A repeat length variation in myo-inositol monophosphatase gene contributes to seed size trait in chickpea. Sci Rep 7:4764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erel R, Dag A, Ben-Gal A, Schwartz A, Yermiyahu U (2008) Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J Am Soc Hortic Sci 133:639–647

    Article  Google Scholar 

  • Flanagan JU, Cassady AI, Schenk G, Guddat LW, Hume DA (2006) Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase. Gene 377:12–20

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Lu L, Qiu W, Wang C, Shou H (2017) OsPAP26 encodes a major purple acid phosphatase and regulates phosphate remobilization in rice. Plant Cell Physiol 58:885–892

    Article  CAS  PubMed  Google Scholar 

  • Ghahremani M, Park J, Anderson EM, Marty-Howard NJ, Mullen RT, Plaxton WC (2018) Lectin AtGAL1 interacts with high-mannose glycoform of the purple acid phosphatase AtPAP26 secreted by phosphate-starved Arabidopsis. Plant Cell Environ. https://doi.org/10.1111/pce.13463

  • González-Muñoz E, Avendaño-Vázquez A-O, Chávez Montes RA, de Folter S, Andrés-Hernández L, Abreu-Goodger C, Sawers RJH (2015) The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Front Plant Sci 6:341

    PubMed  PubMed Central  Google Scholar 

  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC (2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem J 420:57–65

    Article  CAS  PubMed  Google Scholar 

  • Harrison AF (1987) Soil organic phosphorus—a review of world literature. CAB International, Wallingford

    Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley BA, Tran HT, Marty NJ, Park J, Snedden WA, Mullen RT, Plaxton WC (2010) The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation. Plant Physiol 153:1112–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong K, Baten A, Waters DL, Pantoja O, Julia CC, Wissuwa M, Heuer S, Kretzschmar T, Rose TJ (2017) Phosphorus remobilization from rice flag leaves during grain filling: an RNA-seq study. Plant Biotechnol J 15:15–26

    Article  CAS  PubMed  Google Scholar 

  • Kaida R, Hayashi T, Kaneko TS (2008) Purple acid phosphatase in the walls of tobacco cells. Phytochemistry 69:2546–2551

    Article  CAS  PubMed  Google Scholar 

  • Kaida R, Satoh Y, Bulone V, Yamada Y, Kaku T, Hayashi T, Kaneko TS (2009) Activation of β-glucan synthases by wall-bound purple acid phosphatase in tobacco cells. Plant Physiol 150:1822–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Li X, Ma J, Li W, Yan G, Zhang C (2014) GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana. Plant Cell Rep 33:655–667

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Li X, Wang B, Li W, Du H, Zhang C (2018) The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in plants. Front Plant Sci 9:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang R, Chan KH, Yeung E, Lim BL (2009) Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis. Plant Physiol 151:199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan P, Li W, Schmidt W (2013) Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiencyinduced root hair remodeling in Arabidopsis. BMC Genomics 14:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D (2002) Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. J Biol Chem 277:27772–27781

    Article  CAS  PubMed  Google Scholar 

  • Li WYF, Shao G, Lam HM (2008) Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. New Phytol 178:80–91

    Article  CAS  PubMed  Google Scholar 

  • Li C, Gui S, Yang T, Walk T, Wang X, Liao H (2012a) Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot 109:275–285

    Article  CAS  PubMed  Google Scholar 

  • Li RJ, Lu WJ, Guo CJ, Li XJ, Gu JT, Xiao K (2012b) Molecular characterization and functional analysis of OsPHY1, a purple acid phosphatase (PAP)–type phytase gene in rice (Oryza sativa L.). J Integr Agric 11:1217–1226

    Article  CAS  Google Scholar 

  • Li K, Xu C, Fan W, Zhang H, Hou J, Yang A, Zhang K (2014) Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiol Biochem 83:232–242

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li C, Zhang H, Liao H, Wang X (2017) The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean. Physiol Plant 159:215–227

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou J, Wang X, Liao H (2019) A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during AM symbiosis in soybean. Plant Cell Environ. https://doi.org/10.1111/pce.13530

  • Liang C, Tian J, Lam HM, Lim BL, Yan X, Liao H (2010) Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Plant Physiol 152:854–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Sun L, Yao Z, Liao H, Tian J (2012) Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean. PLoS One 7:e38106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao H, Wong FL, Phang TH, Cheung MY, Li WYF, Shao G, Yan X, Lam HM (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene 318:103–111

    Article  CAS  PubMed  Google Scholar 

  • Liu PD, Xue YB, Chen ZJ, Liu GD, Tian J (2016) Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. J Exp Bot 67:4141–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Cai Z, Chen Z, Mo X, Ding X, Liang C, Liu G, Tian J (2018) A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis. Plant Cell Environ 41:2821–2834

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Qiu W, Gao W, Tyerman SD, Shou H, Wang C (2016) OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ 39:2247–2259

    Article  CAS  PubMed  Google Scholar 

  • Lung SC, Leung A, Kuang R, Wang Y, Leung P, Lim BL (2008) Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase. Phytochemistry 69:365–373

    Article  CAS  PubMed  Google Scholar 

  • Mehra P, Pandey BK, Giri J (2016) Comparative morphophysiological analyses and molecular profiling reveal Pi-efficient strategies of a traditional rice genotype. Front Plant Sci 6:1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehra P, Pandey BK, Giri J (2017) Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol J 15:1054–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra P, Singh AP, Bhadouria J, Verma L, Panchal P, Giri J (2018) Phosphate homeostasis: links with seed quality and stress tolerance in chickpea. In: Wani S, Jain M (eds) Pulse improvement. Springer, Cham, pp 191–217

    Chapter  Google Scholar 

  • Menary RC, Staden JV (1976) Effect of phosphorus nutrition and cytokinins on flowering in the tomato, Lycopersicon esculentum Mill. Aust J Plant Physiol 3:201–205

    CAS  Google Scholar 

  • Millar CE, Turk LM (1943) Fundamentals of soil science. Wiley, New York

    Book  Google Scholar 

  • Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 106:3338–3363

    Article  PubMed  CAS  Google Scholar 

  • Mitić N, Noble CJ, Gahan LR, Hanson GR, Schenk G (2009) Metal-ion mutagenesis: conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent MnIIMnII active site. J Am Chem Soc 131:8173–8179

    Article  PubMed  CAS  Google Scholar 

  • Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584

    Article  CAS  PubMed  Google Scholar 

  • Olczak M, Morawiecka B, Watorek W (2003) Plant purple acid phosphatases-genes, structures and biological function. Acta Biochim Pol 50:1245–1256

    Article  CAS  PubMed  Google Scholar 

  • Petraglia A, Tomaselli M, Mondoni A, Brancaleoni L, Carbognani M (2014) Effects of nitrogen and phosphorus supply on growth and flowering phenology of the snowbed forb Gnaphalium supinum L. Flora Morphol Distrib Funct Ecol Plants 209:271–278

    Article  Google Scholar 

  • Raboy V (2001) Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    Article  CAS  Google Scholar 

  • Ravichandran S, Stone S, Benkel B, Prithiviraj B (2013) Purple Acid Phosphatase5 is required for maintaining basal resistance against Pseudomonas syringae in Arabidopsis. BMC Plant Biol 13:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy CS, Kim KM, James D, Varakumar P, Reddy MK (2017) PgPAP18, a heat-inducible novel purple acid phosphatase 18-like gene (PgPAP18-like) from Pennisetum glaucum, may play a crucial role in environmental stress adaptation. Acta Physiol Plant 39:54

    Article  CAS  Google Scholar 

  • Robinson WD, Park J, Tran HT, Del Vecchio HA, Ying S, Zins JL, Patel K, McKnight TD, Plaxton WC (2012) The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J Exp Bot 63:6531–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J (1999) Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. Arch Biochem Biophys 370:183–189

    Article  CAS  PubMed  Google Scholar 

  • Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, de Jersey J (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 250:117–125

    Article  CAS  PubMed  Google Scholar 

  • Schenk G, Gahan LR, Carrington LE, Mitic N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW (2005) Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Proc Natl Acad Sci U S A 102:273–278

    Article  CAS  PubMed  Google Scholar 

  • Schenk G, Miti N, Hanson GR, Comba P (2013) Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord Chem Rev 257:473–482

    Article  CAS  Google Scholar 

  • Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL (2012) A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. New Phytol 194:206–219

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Liao H (2015) The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants, Annual plant reviews, vol 48. Wiley, Hoboken, NJ, pp 265–288

    Google Scholar 

  • Tian J, Wang C, Zhang Q, He X, Whelan J, Shou H (2012) Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. J Integr Plant Biol 54:631–639

    Article  CAS  PubMed  Google Scholar 

  • Tran HT, Hurley BA, Plaxton WC (2010a) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27

    Article  CAS  Google Scholar 

  • Tran HT, Qian W, Hurley BA, She YM, Wang D, Plaxton WC (2010b) Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant Cell Environ 33:1789–1803

    Article  CAS  PubMed  Google Scholar 

  • Veljanovski V, Vanderbeld B, Knowles VL, Snedden WA, Plaxton WC (2006) Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. Plant Physiol 142:1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkidasamy B, Selvaraj D, Ramalingam S (2019) Genome-wide analysis of purple acid phosphatase (PAP) family proteins in Jatropha curcas L. Int J Biol Macromol 123:648–656

    Article  CAS  PubMed  Google Scholar 

  • Wang XR, Wang YX, Tian J, Lim BL, Yan XL, Liao H (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li Z, Qian W, Guo W, Gao X, Huang L, Wang H, Zhu H, Wu JW, Wang D, Liu D (2011) The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol 157:1283–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Lu S, Zhang Y, Li Z, Du X, Liu D (2014) Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. J Integr Plant Biol 56:299–314

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Si Z, Li F, Xiong X, Lei L, Xie F, Chen D, Li Y, Li Y (2015) A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus. Plant Mol Biol 88:515–529

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Harrison MJ, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Katagi H, Harrison M, Wang ZY (2006) Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula. Plant Sci 170:191–202

    Article  CAS  Google Scholar 

  • Xie L, Shang Q (2018) Genome-wide analysis of purple acid phosphatase structure and expression in ten vegetable species. BMC Genomics 19:646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, Ma JF (2017) Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541:92–95

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wang C, Tian J, Li K, Shou H (2011) Identification of rice purple acid phosphatases related to phosphate starvation signaling. Plant Biol 13:7–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yu L, Yung KF, Leung DY, Sun F, Lim BL (2012) Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. Biotechnol Biofuels 5:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang X, Lu S, Liu D (2014) A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation. J Exp Bot 65:6577–6588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Qian W, Lu X, Li D, Liu X, Liu K, Wang D (2005) Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol 59:581–594

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our research is funded by a core grant from NIPGR and DBT, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitender Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehra, P., Giri, J. (2020). Purple Acid Phosphatases (PAPs): Molecular Regulation and Diverse Physiological Roles in Plants. In: Pandey, G.K. (eds) Protein Phosphatases and Stress Management in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-48733-1_3

Download citation

Publish with us

Policies and ethics