Skip to main content

Role of Specific Phytochemicals Against Gastrointestinal Malignancies

  • Chapter
  • First Online:
Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers

Abstract

The estimation from the American Cancer Society recorded cancer with the highest incidence and mortality rate every year. The most common cancer as estimated from the global cancer statistics is the gastrointestinal cancers with a major mortality rate. The common conventional therapies including chemo- and radiation therapies can improve prognosis of the patient only up to 5% due to adverse toxic side effect and multidrug resistance (MDR) developed by the patient against therapeutic drugs. The onset of these digestive system-related cancers is due to the Western lifestyle and food habits. The epidemiological studies evidenced that use of phytochemicals has significant health benefits. They are bestowed with their antioxidant and anticarcinogenic properties that control multiple signalling pathways involved in tumor progression like PI3k/Akt/MAPK and sensitize the tumor-suppressor gene like p53 to the chemo-drugs. This chapter presents cancers of the upper gastrointestinal tract (esophagus and gastric) and a part of lower intestine (colon and rectum) with specific phytochemicals inhibiting the tumor. It also focus on the molecular mechanism involved in promoting cancer and role of the phytochemicals in regulating these signalling pathways. It also include derivative forms of phytochemicals and their enhancement efficacy when used in combinational therapies. We further focus on novel nano-formulated phytochemicals used against cancer therapy. Thus, our chapter summarizes the use of phytochemicals that strengthen as a therapeutic candidate against gastrointestinal malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-Fluorouracil

ABCB:

ATP-binding cassette subfamily B member

ACF:

Aberrant crypt foci

AMPK:

5′-AMP-activated protein kinase

APC:

Adenomatous polyposis coli

Chk1:

Checkpoint kinase 1

COX-2:

Cyclooxygenase-2

CRC:

Colorectal cancer

CSC:

Cancer stem cells

DCA:

Deoxycholic acid

EC:

Esophageal cancer

EGCG:

Epigallocatechin-3-gallate

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial mesenchymal transition

GC:

Gastric cancer

HER2:

Human epidermal growth factor

IL-8:

Interleukin-8

iNOS:

Inducible nitric oxide synthase

JAK:

Janus kinase

MDR:

Multidrug resistance

MMP:

Matrix metalloproteinases

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa B

NRF2:

Nuclear factor erythroid 2-related factor 2

PARP:

Poly (ADP-ribose) polymerase

PEG:

Polyethylene glycol

P-gp:

P-glycoprotein

PLGA:

Poly (lactic-co-glycolic acid)

ROS:

Reactive oxygen species

STAT3:

Signal transducer and activator of transcription 3

TNF-α:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69(1), 7–34.

    Google Scholar 

  2. Bray, F., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  3. Parkin, D. M., et al. (2005). Global cancer statistics, 2002. CA: a Cancer Journal for Clinicians, 55(2), 74–108.

    Google Scholar 

  4. Fitzmaurice, C., et al. (2018). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncology, 4(11), 1553–1568.

    Google Scholar 

  5. Nussbaumer, S., et al. (2011). Analysis of anticancer drugs: A review. Talanta, 85(5), 2265–2289.

    CAS  Google Scholar 

  6. Monsuez, J.-J., et al. (2010). Cardiac side-effects of cancer chemotherapy. International Journal of Cardiology, 144(1), 3–15.

    Google Scholar 

  7. Dropcho, E. J. (2011). The neurologic side effects of chemotherapeutic agents. CONTINUUM: Lifelong Learning in Neurology, 17(1), 95–112.

    Google Scholar 

  8. Lee, K. W., Bode, A. M., & Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nature Reviews Cancer, 11(3), 211.

    CAS  Google Scholar 

  9. Howes, M.-J. R., & Simmonds, M. S. (2014). The role of phytochemicals as micronutrients in health and disease. Current Opinion in Clinical Nutrition & Metabolic Care, 17(6), 558–566.

    CAS  Google Scholar 

  10. Murakami, A. (2009). Chemoprevention with phytochemicals targeting inducible nitric oxide synthase, in Food Factors for Health Promotion (pp. 193–203). Basel: Karger Publishers.

    Google Scholar 

  11. Vidya Priyadarsini, R., & Nagini, S. (2012). Cancer chemoprevention by dietary phytochemicals: Promises and pitfalls. Current Pharmaceutical Biotechnology, 13(1), 125–136.

    Google Scholar 

  12. Surh, Y.-J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3(10), 768.

    CAS  Google Scholar 

  13. Straatman, J., et al. (2017). Techniques and short-term outcomes for total minimally invasive Ivor Lewis esophageal resection in distal esophageal and gastroesophageal junction cancers: pooled data from six European centers. Surgical Endoscopy, 31(1), 119–126.

    Google Scholar 

  14. Jenkins, G., et al. (2008). The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-κB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis, 23(5), 399–405.

    CAS  Google Scholar 

  15. Chiarion-Sileni, V., et al. (2007). Phase II trial of docetaxel, cisplatin and fluorouracil followed by carboplatin and radiotherapy in locally advanced oesophageal cancer. British Journal of Cancer, 96(3), 432–438.

    CAS  Google Scholar 

  16. Cooper, J. S., et al. (1999). Chemoradiotherapy of locally advanced esophageal cancer: Long-term follow-up of a prospective randomized trial (RTOG 85-01). JAMA, 281(17), 1623–1627.

    CAS  Google Scholar 

  17. Wagner, A. D., et al. (2006). Chemotherapy in advanced gastric cancer: A systematic review and meta-analysis based on aggregate data. Journal of Clinical Oncology, 24(18), 2903–2909.

    CAS  Google Scholar 

  18. Janmaat, M. L., et al. (2006). Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. Journal of Clinical Oncology, 24(10), 1612–1619.

    CAS  Google Scholar 

  19. Tew, W. Phase II trial of erlotinib for second-line treatment in advanced esophageal cancer. In Gastrointestinal Cancers Symposium, 2005. 2005.

    Google Scholar 

  20. Vanhoefer, U., et al. (2004). Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. Journal of Clinical Oncology, 22(1), 175–184.

    CAS  Google Scholar 

  21. Daxenbichler, M. E., VanEtten, C. H., & Williams, P. H. (1979). Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. Journal of Agricultural and Food Chemistry, 27(1), 34–37.

    CAS  Google Scholar 

  22. Conaway, C. C., et al. (2005). Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Research, 65(18), 8548–8557.

    CAS  Google Scholar 

  23. Hecht, S. S. (1997). Approaches to chemoprevention of lung cancer based on carcinogens in tobacco smoke. Environmental Health Perspectives, 105(suppl 4), 955–963.

    CAS  Google Scholar 

  24. Xue, J.-H., et al. (2009). High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance. Cardiovascular Research, 86(1), 141–150.

    Google Scholar 

  25. Stoner, G. D., et al. (1999). Isothiocyanates and freeze-dried strawberries as inhibitors of esophageal cancer. Toxicological Sciences: An Official Journal of the Society of Toxicology, 52(suppl_1), 95–100.

    CAS  Google Scholar 

  26. Morse, M. A., et al. (1997). Mechanism of enhancement of esophageal tumorigenesis by 6-phenylhexyl isothiocyanate. Cancer Letters, 112(1), 119–125.

    CAS  Google Scholar 

  27. Sheerin, A., Thompson, K., & Goyns, M. (2002). Altered composition of the AP-1 transcription factor in immortalized compared to normal proliferating cells. Cancer Letters, 177(1), 83–87.

    CAS  Google Scholar 

  28. Stoner, G. D., & Wang, L.-S. (2012). Chemoprevention of esophageal squamous cell carcinoma with berries. In Natural products in Cancer prevention and therapy (pp. 1–20). Berlin: Springer.

    Google Scholar 

  29. Arcidiacono, P., et al. (2018). p63 is a key regulator of iRHOM2 signalling in the keratinocyte stress response. Nature Communications, 9(1), 1021.

    Google Scholar 

  30. Hirata, T., et al. (2019). 4-Methylthio-3-butenyl isothiocyanate (MTBITC) induced apoptotic cell death and G2/M cell cycle arrest via ROS production in human esophageal epithelial cancer cells. The Journal of Toxicological Sciences, 44(2), 73–81.

    CAS  Google Scholar 

  31. Langcake, P., & Pryce, R. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9(1), 77–86.

    CAS  Google Scholar 

  32. Catalgol, B., et al. (2012). Resveratrol: French paradox revisited. Frontiers in Pharmacology, 3, 141.

    CAS  Google Scholar 

  33. Chan, M. M.-Y. (2002). Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochemical Pharmacology, 63(2), 99–104.

    CAS  Google Scholar 

  34. Daroch, F., et al. (2001). In vitro antibacterial activity of Chilean red wines against Helicobacter pylori. Microbios, 104(408), 79–85.

    CAS  Google Scholar 

  35. Mahady, G. B., & Pendland, S. L. (2000). Resveratrol inhibits the growth of Helicobacter pylori in vitro. The American Journal of Gastroenterology, 95(7), 1849.

    CAS  Google Scholar 

  36. Mahady, G. B., Pendland, S. L., & Chadwick, L. R. (2003). Resveratrol and red wine extracts inhibit the growth of CagA+ strains of Helicobacter pylori in vitro. The American Journal of Gastroenterology, 98(6), 1440.

    CAS  Google Scholar 

  37. Aggarwal, B. B., et al. (2004). Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Research, 24(5A), 2783–2840.

    CAS  Google Scholar 

  38. Lackner, M., & Lass-Florl, C. (2013). Up-date on diagnostic strategies of invasive aspergillosis. Current Pharmaceutical Design, 19(20), 3595–3614.

    CAS  Google Scholar 

  39. Kundu, J. K., & Surh, Y.-J. (2008). Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Letters, 269(2), 243–261.

    CAS  Google Scholar 

  40. Harikumar, K. B., et al. (2010). Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. International Journal of Cancer, 127(2), 257–268.

    CAS  Google Scholar 

  41. Tang, Q., et al. (2013). Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma. Cancer Letters, 336(2), 325–337.

    CAS  Google Scholar 

  42. Lin, Y., et al. (2014). A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of oesophageal cancer. British Journal of Nutrition, 112(12), 2002–2009.

    CAS  Google Scholar 

  43. McCormack, D., & McFadden, D. (2012). Pterostilbene and cancer: Current review. Journal of Surgical Research, 173(2), e53–e61.

    CAS  Google Scholar 

  44. Feng, Y., et al. (2016). Pterostilbene inhibits the growth of human esophageal cancer cells by regulating endoplasmic reticulum stress. Cellular Physiology and Biochemistry, 38(3), 1226–1244.

    CAS  Google Scholar 

  45. Beck, D., et al. (2013). Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Science Signaling, 6(260), ra7-ra7.

    Google Scholar 

  46. Lakshmanan, A. P., et al. (2013). The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats: A differential role of unfolded protein response (UPR) signaling proteins. The International Journal of Biochemistry & Cell Biology, 45(2), 438–447.

    CAS  Google Scholar 

  47. Tay, K. H., et al. (2014). Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cellular Signalling, 26(2), 287–294.

    CAS  Google Scholar 

  48. Khatiwada, J., et al. (2011). Green tea, phytic acid, and inositol in combination reduced the incidence of azoxymethane-induced colon tumors in Fischer 344 male rats. Journal of Medicinal Food, 14(11), 1313–1320.

    CAS  Google Scholar 

  49. Okello, E., et al. (2011). In vitro protective effects of colon-available extract of Camellia sinensis (tea) against hydrogen peroxide and beta-amyloid (Aβ (1–42)) induced cytotoxicity in differentiated PC12 cells. Phytomedicine, 18(8–9), 691–696.

    CAS  Google Scholar 

  50. Yang, G., et al. (2011). Green tea consumption and colorectal cancer risk: A report from the Shanghai Men’s health study. Carcinogenesis, 32(11), 1684–1688.

    CAS  Google Scholar 

  51. Ye, F., et al. (2012). Suppression of esophageal cancer cell growth using curcumin,(−)-epigallocatechin-3-gallate and lovastatin. World journal of gastroenterology: WJG, 18(2), 126.

    CAS  Google Scholar 

  52. Liu, L., et al. (2015). Molecular mechanism of epigallocatechin-3-gallate in human esophageal squamous cell carcinoma in vitro and in vivo. Oncology Reports, 33(1), 297–303.

    CAS  Google Scholar 

  53. Liu, L., Zuo, J., & Wang, G. (2017). Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis in Ec9706 and Eca109 esophageal carcinoma cells. Oncology Letters, 14(4), 4391–4395.

    Google Scholar 

  54. Kato, K., et al. (2008). Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer, 99(4), 647.

    CAS  Google Scholar 

  55. Rocco, J. W., & Sidransky, D. (2001). p16 (MTS-1/CDKN2/INK4a) in cancer progression. Experimental Cell Research, 264(1), 42–55.

    CAS  Google Scholar 

  56. Meng, J., et al. (2017). Epigallocatechin-3-gallate inhibits growth and induces apoptosis in esophageal cancer cells through the demethylation and reactivation of the p16 gene. Oncology Letters, 14(1), 1152–1156.

    CAS  Google Scholar 

  57. Gao, Y., et al. (2013). Enhancement of (−)-epigallocatechin-3-gallate and theaflavin-3-3′-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochemical and Biophysical Research Communications, 438(2), 370–374.

    CAS  Google Scholar 

  58. Liu, L., et al. (2017). Epigallocatechin-3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathology-Research and Practice, 213(10), 1242–1250.

    Google Scholar 

  59. Li, X., et al. (2019). Phase II trial of Epigallocatechin-3-Gallate in acute radiation-induced esophagitis for esophagus cancer. Journal of Medicinal Food.

    Google Scholar 

  60. Govindarajan, V., & Stahl, W. H. (1980). Turmeric—Chemistry, technology, and quality. Critical Reviews in Food Science & Nutrition, 12(3), 199–301.

    CAS  Google Scholar 

  61. Mirzaei, H., et al. (2018). MicroRNA: A novel target of curcumin in cancer therapy. Journal of Cellular Physiology, 233(4), 3004–3015.

    CAS  Google Scholar 

  62. Mirzaei, H., et al. (2017). Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy, 85, 102–112.

    CAS  Google Scholar 

  63. Mirzaei, H., et al. (2016). Can curcumin and its analogs be a new treatment option in cancer therapy? Cancer Gene Therapy, 23(11), 410–410.

    CAS  Google Scholar 

  64. Shehzad, A., Lee, J., & Lee, Y. S. (2013). Curcumin in various cancers. BioFactors, 39(1), 56–68.

    CAS  Google Scholar 

  65. Anand, P., et al. (2008). Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Letters, 267(1), 133–164.

    CAS  Google Scholar 

  66. Tajuddin, W. M., et al. (2019). Mechanistic understanding of Curcumin’s therapeutic effects in lung cancer. Nutrients, 11(12), 2989.

    CAS  Google Scholar 

  67. Zhao, L., et al. (2015). Development of RGD-functionalized PEG-PLA micelles for delivery of curcumin. Journal of Biomedical Nanotechnology, 11(3), 436–446.

    CAS  Google Scholar 

  68. Jiang, G.-M., et al. (2015). Curcumin combined with FAPαc vaccine elicits effective antitumor response by targeting indolamine-2, 3-dioxygenase and inhibiting EMT induced by TNF-α in melanoma. Oncotarget, 6(28), 25932.

    Google Scholar 

  69. Zhang, F.-J., et al. (2015). Curcumin inhibits Ec109 cell growth via an AMPK-mediated metabolic switch. Life Sciences, 134, 49–55.

    CAS  Google Scholar 

  70. Lee, Y., & Kim, E.-K. (2013). AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Experimental & Molecular Medicine, 45(7), e33–e33.

    Google Scholar 

  71. Hardie, D. G. (2013). AMPK: A target for drugs and natural products with effects on both diabetes and cancer. Diabetes, 62(7), 2164–2172.

    CAS  Google Scholar 

  72. Xiao, K., et al. (2013). Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells. Journal of Pharmacological Sciences, 13085FP.

    Google Scholar 

  73. Li, X., et al. (2015). Curcumin induces apoptosis by PTEN/PI3K/AKT pathway in EC109 cells. Zhongguo ying yong sheng li xue za zhi= Zhongguo yingyong shenglixue zazhi= Chinese Journal of Applied Physiology, 31(2), 174–177.

    Google Scholar 

  74. Chemnitzer, O., et al. (2017). Response to TNF-α is increasing along with the progression in Barrett’s esophagus. Digestive Diseases and Sciences, 62(12), 3391–3401.

    CAS  Google Scholar 

  75. Liu, Y., et al. (2018). The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 37(1), 1–12.

    Google Scholar 

  76. Wang, Y., et al. (2018). The curcumin analogs 2-pyridyl cyclohexanone induce apoptosis via inhibition of the JAK2–STAT3 pathway in human esophageal squamous cell carcinoma cells. Frontiers in Pharmacology, 9, 820.

    Google Scholar 

  77. Rahimi, H. R., et al. (2016). Novel delivery system for natural products: Nano-curcumin formulations. Avicenna journal of phytomedicine, 6(4), 383.

    CAS  Google Scholar 

  78. Pendleton, E. G., Jamasbi, R. J., & Geusz, M. E. (2019). Tetrahydrocurcumin, curcumin, and 5-fluorouracil effects on human esophageal carcinoma cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 19(8), 1012–1020.

    Google Scholar 

  79. Sasaki, H., et al. (2011). Innovative preparation of curcumin for improved oral bioavailability. Biological and Pharmaceutical Bulletin, 34(5), 660–665.

    CAS  Google Scholar 

  80. Mizumoto, A., et al. (2019). Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma. Journal of Gastroenterology, 54(8), 687–698.

    CAS  Google Scholar 

  81. Hosseini, S., et al. (2018). An in vitro study on curcumin delivery by nano-micelles for esophageal squamous cell carcinoma (KYSE-30). Reports of Biochemistry & Molecular Biology, 6(2), 137.

    CAS  Google Scholar 

  82. Martin, R. C., et al. (2015). Gold nanorods and curcumin-loaded nanomicelles for efficient in vivo photothermal therapy of Barrett’s esophagus. Nanomedicine, 10(11), 1723–1733.

    CAS  Google Scholar 

  83. Rawla, P., & Barsouk, A. (2019). Epidemiology of gastric cancer: Global trends, risk factors and prevention. Przeglad Gastroenterologiczny, 14(1), 26.

    CAS  Google Scholar 

  84. Ustaalioğlu, B.B.Ö., et al., Capecitabine-cisplatin versus 5-fluorouracil/leucovorin in combination with radiotherapy for adjuvant therapy of lymph node positive locally advanced gastric cancer. 2018.

    Google Scholar 

  85. Lazăr, D. C., et al. (2016). New advances in targeted gastric cancer treatment. World Journal of Gastroenterology, 22(30), 6776.

    Google Scholar 

  86. Fan, B., et al. (2018). miR-17–92 cluster is connected with disease progression and oxaliplatin/capecitabine chemotherapy efficacy in advanced gastric cancer patients: A preliminary study. Medicine, 97(35).

    Google Scholar 

  87. Ryu, M.-H., et al. (2015). Multicenter phase II study of trastuzumab in combination with capecitabine and oxaliplatin for advanced gastric cancer. European Journal of Cancer, 51(4), 482–488.

    CAS  Google Scholar 

  88. Xu, R., et al. (2013). Results of a randomized and controlled clinical trial evaluating the efficacy and safety of combination therapy with Endostar and S-1 combined with oxaliplatin in advanced gastric cancer. Oncotargets and Therapy, 6, 925.

    CAS  Google Scholar 

  89. Van Cutsem, E., et al., Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: A report of the V325 study group. 2006.

    Google Scholar 

  90. Wang, L., Sr. (2007). The effects of gemcitabine on cell apoptosis and cycle of gastric cancer. Journal of Clinical Oncology, 25(18_suppl), 15181.

    Google Scholar 

  91. De, R., et al. (2009). Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy, 53(4), 1592–1597.

    CAS  Google Scholar 

  92. Huang, F., et al. (2017). Curcumin inhibits gastric cancer-derived mesenchymal stem cells mediated angiogenesis by regulating NF-κB/VEGF signaling. American Journal of Translational Research, 9(12), 5538.

    CAS  Google Scholar 

  93. Qiang, Z., et al. (2019). Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. Journal of International Medical Research, 47(3), 1288–1297.

    CAS  Google Scholar 

  94. Liu, W.-H., et al. (2019). Curcumin inhibits proliferation, migration and invasion of gastric cancer cells via Wnt3a/β-catenin/EMT signaling pathway. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica, 44(14), 3107–3115.

    Google Scholar 

  95. Fu, H., et al. (2018). Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. Journal of Cellular Physiology, 233(6), 4634–4642.

    CAS  Google Scholar 

  96. Wang, L., et al. (2017). Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase γ depletion disrupting cellular bioenergetics. Journal of Experimental & Clinical Cancer Research, 36(1), 47.

    Google Scholar 

  97. Xia, P., et al. (2015). Prognostic value of circulating CD133+ cells in patients with gastric cancer. Cell Proliferation, 48(3), 311–317.

    CAS  Google Scholar 

  98. Hatakeyama, K., et al. (2015). A novel splice variant of XIAP-associated factor 1 (XAF1) is expressed in peripheral blood containing gastric cancer-derived circulating tumor cells. Gastric Cancer, 18(4), 751–761.

    CAS  Google Scholar 

  99. Saito, H., et al. (2013). Increased apoptosis and elevated Fas expression in circulating natural killer cells in gastric cancer patients. Gastric Cancer, 16(4), 473–479.

    CAS  Google Scholar 

  100. Gu, X., et al. (2019). Curcumin inhibits liver metastasis of gastric cancer through reducing circulating tumor cells. Aging (Albany NY), 11(5), 1501.

    Google Scholar 

  101. Ye, C., et al. (2019). A novel curcumin derivative cl-6 exerts antitumor effect in human gastric cancer cells by inducing apoptosis through hippo–YaP signaling pathway. Oncotargets and Therapy, 12, 2259.

    CAS  Google Scholar 

  102. Silva, G., et al. (2018). Curcumin analog CH-5 suppresses the proliferation, migration, and invasion of the human gastric cancer cell line HGC-27. Molecules, 23(2), 279.

    Google Scholar 

  103. He, W., et al. (2019). Curcuminoid WZ35 synergize with cisplatin by inducing ROS production and inhibiting TrxR1 activity in gastric cancer cells. Journal of Experimental & Clinical Cancer Research, 38(1), 207.

    Google Scholar 

  104. Tsai, W. H., et al. (2018). EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles. International Journal of Nanomedicine, 13, 903.

    CAS  Google Scholar 

  105. Zhang, X., et al. (2015). Resveratrol protects against helicobacter pylori-associated gastritis by combating oxidative stress. International Journal of Molecular Sciences, 16(11), 27757–27769.

    CAS  Google Scholar 

  106. Jing, X., et al. (2016). Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncology Reports, 35(1), 472–478.

    Google Scholar 

  107. Miyoshi, K., & Hennighausen, L. (2003). β-Catenin: A transforming actor on many stages. Breast Cancer Research, 5(2), 63.

    CAS  Google Scholar 

  108. Dai, H., et al. (2018). Resveratrol inhibits the growth of gastric cancer via the Wnt/β-catenin pathway. Oncology Letters, 16(2), 1579–1583.

    Google Scholar 

  109. Yang, T., et al. (2018). Resveratrol inhibits Interleukin-6 induced invasion of human gastric cancer cells. Biomedicine & Pharmacotherapy, 99, 766–773.

    CAS  Google Scholar 

  110. Yang, Z., et al. (2019). Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition. Experimental and Therapeutic Medicine, 17(3), 1569–1578.

    CAS  Google Scholar 

  111. Gao, Q., et al. (2015). Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncology Letters, 9(5), 2381–2387.

    CAS  Google Scholar 

  112. Yang, Y., et al. (2018). Resveratrol induced apoptosis in human gastric carcinoma SGC-7901 cells via activation of mitochondrial pathway. Asia-Pacific Journal of Clinical Oncology, 14(5), e317–e324.

    Google Scholar 

  113. Wu, X., et al. (2018). Resveratrol induces apoptosis in SGC-7901 gastric cancer cells. Oncology Letters, 16(3), 2949–2956.

    Google Scholar 

  114. Xu, H., et al. (2018). Modulatory potential of curcumin and resveratrol on p53 post-translational modifications during gastric cancer. Journal of Environmental Pathology, Toxicology and Oncology, 37(2).

    Google Scholar 

  115. Xu, J., et al. (2017). Resveratrol reverses doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. Journal of Experimental & Clinical Cancer Research, 36(1), 19.

    Google Scholar 

  116. Kartal-Yandim, M., Adan-Gokbulut, A., & Baran, Y. (2016). Molecular mechanisms of drug resistance and its reversal in cancer. Critical Reviews in Biotechnology, 36(4), 716–726.

    CAS  Google Scholar 

  117. Nieth, C., et al. (2003). Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Letters, 545(2–3), 144–150.

    CAS  Google Scholar 

  118. Wu, C.-P., & Ambudkar, S. V. (2014). The pharmacological impact of ATP-binding cassette drug transporters on vemurafenib-based therapy. Acta Pharmaceutica Sinica B, 4(2), 105–111.

    Google Scholar 

  119. Kapse-Mistry, S., et al. (2014). Nanodrug delivery in reversing multidrug resistance in cancer cells. Frontiers in Pharmacology, 5, 159.

    Google Scholar 

  120. Borska, S., et al. (2012). In vitro effect of quercetin on human gastric carcinoma: Targeting cancer cells death and MDR. Food and Chemical Toxicology, 50(9), 3375–3383.

    CAS  Google Scholar 

  121. Karthikeyan, S., Hoti, S., & Prasad, N. R. (2014). Resveratrol modulates expression of ABC transporters in non-small lung cancer cells: Molecular docking and gene expression studies. Journal of Cancer Science and Therapy, 6(12), 497–504.

    CAS  Google Scholar 

  122. Belvedere, R., et al. (2016). Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of formyl peptide receptor pathway. Scientific Reports, 6, 29660.

    CAS  Google Scholar 

  123. Mieszala, K., et al. (2018). Expression of genes and proteins of multidrug resistance in gastric cancer cells treated with resveratrol. Oncology Letters, 15(4), 5825–5832.

    Google Scholar 

  124. Hu, Y., et al. (2019). Anti-miRNA21 and resveratrol-loaded polysaccharide-based mesoporous silica nanoparticle for synergistic activity in gastric carcinoma. Journal of Drug Targeting, 27(10), 1135–1143.

    CAS  Google Scholar 

  125. Banerjee, S., et al. (2008). Multi-targeted therapy of cancer by genistein. Cancer Letters, 269(2), 226–242.

    CAS  Google Scholar 

  126. Li, Y., & Sarkar, F. H. (2002). Inhibition of nuclear factor κB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clinical Cancer Research, 8(7), 2369–2377.

    CAS  Google Scholar 

  127. Yuan-jing, F., Nan-shan, H., & Lian, X. (2009). Genistein synergizes with RNA interference inhibiting survivin for inducing DU-145 of prostate cancer cells to apoptosis. Cancer Letters, 284(2), 189–197.

    Google Scholar 

  128. Frey, R. S., Li, J., & Singletary, K. W. (2001). Effects of genistein on cell proliferation and cell cycle arrest in nonneoplastic human mammary epithelial cells: Involvement of Cdc2, p21waf/cip1, p27kip1, and Cdc25C expression. Biochemical Pharmacology, 61(8), 979–989.

    CAS  Google Scholar 

  129. Chang, K.-L., et al. (2004). Genistein arrests hepatoma cells at G2/M phase: Involvement of ATM activation and upregulation of p21waf1/cip1 and Wee1. Biochemical Pharmacology, 67(4), 717–726.

    CAS  Google Scholar 

  130. Ouyang, G., et al. (2009). Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biology International, 33(12), 1237–1244.

    CAS  Google Scholar 

  131. Zhao, R., et al. (2009). Effects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells. Nutrition and Cancer, 61(3), 397–407.

    CAS  Google Scholar 

  132. Park, C. E., et al. (2010). The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. Journal of Medicinal Food, 13(4), 815–820.

    CAS  Google Scholar 

  133. Rahal, O. M., & Simmen, R. C. (2010). PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis, 31(8), 1491–1500.

    CAS  Google Scholar 

  134. Liu, Y.-L., et al. (2013). Genistein induces G2/M arrest in gastric cancer cells by increasing the tumor suppressor PTEN expression. Nutrition and Cancer, 65(7), 1034–1041.

    CAS  Google Scholar 

  135. Mazur, W. (1998). 11 Phytoestrogen content in foods. Baillière's Clinical Endocrinology and Metabolism, 12(4), 729–742.

    CAS  Google Scholar 

  136. Thompson, L.U., et al., Mammalian lignan production from various foods. 1991.

    Google Scholar 

  137. Takeshima, E., et al. (2009). NF-κB activation by Helicobacter pylori requires Akt-mediated phosphorylation of p65. BMC Microbiology, 9(1), 36.

    Google Scholar 

  138. Yang, J. J., et al. (2012). Interaction effects between genes involved in the AKT signaling pathway and phytoestrogens in gastric carcinogenesis: A nested case–control study from the Korean Multi-center Cancer Cohort. Molecular Nutrition & Food Research, 56(11), 1617–1626.

    CAS  Google Scholar 

  139. Tanabe, T., & Tohnai, N. (2002). Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins & Other Lipid Mediators, 68, 95–114.

    Google Scholar 

  140. Li, Y., et al. (2011). Involvement of nuclear factor κB (NF-κB) in the downregulation of cyclo-oxygenase-2 (COX-2) by genistein in gastric cancer cells. Journal of International Medical Research, 39(6), 2141–2150.

    CAS  Google Scholar 

  141. Yu, D., et al. (2014). Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncology Reports, 31(2), 673–678.

    CAS  Google Scholar 

  142. Cho, L. Y., et al. (2015). Gene polymorphisms in the ornithine decarboxylase–polyamine pathway modify gastric cancer risk by interaction with isoflavone concentrations. Gastric Cancer, 18(3), 495–503.

    CAS  Google Scholar 

  143. Fearon, K., et al. (2011). Definition and classification of cancer cachexia: An international consensus. The Lancet Oncology, 12(5), 489–495.

    Google Scholar 

  144. Evans, W. J., et al. (2008). Cachexia: A new definition. Clinical Nutrition, 27(6), 793–799.

    CAS  Google Scholar 

  145. Yanagihara, K., et al. (2013). Inhibitory effects of isoflavones on tumor growth and cachexia in newly established cachectic mouse models carrying human stomach cancers. Nutrition and Cancer, 65(4), 578–589.

    CAS  Google Scholar 

  146. Huang, W., et al. (2014). Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. International Journal of Molecular Sciences, 15(3), 3432–3443.

    CAS  Google Scholar 

  147. Verhey, K. J., & Hammond, J. W. (2009). Traffic control: Regulation of kinesin motors. Nature Reviews Molecular Cell Biology, 10(11), 765–777.

    CAS  Google Scholar 

  148. Sheng, Y., et al. (2018). Upregulation of KIF20A correlates with poor prognosis in gastric cancer. Cancer Management and Research, 10, 6205.

    CAS  Google Scholar 

  149. Cao, X., et al. (2016). 7-Difluoromethoxyl-5, 4′-di-n-octyl genistein inhibits the stem-like characteristics of gastric cancer stem-like cells and reverses the phenotype of epithelial-mesenchymal transition in gastric cancer cells. Oncology Reports, 36(2), 1157–1165.

    CAS  Google Scholar 

  150. Aditya, N., et al. (2013). Curcumin and genistein coloaded nanostructured lipid carriers: In vitro digestion and antiprostate cancer activity. Journal of Agricultural and Food Chemistry, 61(8), 1878–1883.

    CAS  Google Scholar 

  151. Lee, A., Fox, J., & Hazell, S. (1993). Pathogenicity of Helicobacter pylori: A perspective. Infection and Immunity, 61(5), 1601.

    CAS  Google Scholar 

  152. Cox, A. D., et al. (2014). Drugging the undruggable RAS: Mission possible? Nature Reviews Drug Discovery, 13(11), 828–851.

    CAS  Google Scholar 

  153. Graf, W., et al. (2020). Prognostic impact of BRAF and KRAS mutation in patients with colorectal and appendiceal peritoneal metastases scheduled for CRS and HIPEC. Annals of Surgical Oncology, 27(1), 293–300.

    Google Scholar 

  154. Mayor, S. (2006). NICE rules on chemotherapy drugs for colon and breast cancer. BMJ, 332(7549), 1052.

    Google Scholar 

  155. Li, Y.-H., et al. (2015). Role of phytochemicals in colorectal cancer prevention. World journal of gastroenterology: WJG, 21(31), 9262.

    CAS  Google Scholar 

  156. Liu, J., et al. (2018). MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2. International Journal of Clinical and Experimental Pathology, 11(12), 5622.

    CAS  Google Scholar 

  157. Vymetalkova, V., et al. (2020). Expression quantitative trait loci in ABC transporters are associated with survival in 5-FU treated colorectal cancer patients. Mutagenesis.

    Google Scholar 

  158. Divisi, D., et al. (2006). Diet and cancer. Acta Biomedica-Ateneo Parmense, 77(2), 118.

    Google Scholar 

  159. Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: A review. Journal of the American Dietetic Association, 96(10), 1027–1039.

    CAS  Google Scholar 

  160. Greenwald, P. (2005). Lifestyle and medical approaches to cancer prevention. In Tumor Prevention and Genetics III (pp. 1–15). Berlin: Springer.

    Google Scholar 

  161. Vainio, H., & Weiderpass, E. (2006). Fruit and vegetables in cancer prevention. Nutrition and Cancer, 54(1), 111–142.

    CAS  Google Scholar 

  162. Panaro, M. A., et al. (2012). Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-κB activation in Caco-2 and SW480 human colon cancer cells. British Journal of Nutrition, 108(9), 1623–1632.

    CAS  Google Scholar 

  163. Gong, W., et al. (2017). The inhibitory effect of resveratrol on COX-2 expression in human colorectal cancer: A promising therapeutic strategy. European Review for Medical and Pharmacological Sciences, 21(5), 1136–1143.

    Google Scholar 

  164. Chang, C.-H., et al. (2017). Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. International Journal of Oncology, 50(3), 873–882.

    CAS  Google Scholar 

  165. Li, D., et al. (2019). Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. International Journal of Molecular Medicine, 43(1), 630–640.

    CAS  Google Scholar 

  166. Zeng, Y.-H., et al. (2017). Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncology Reports, 38(1), 456–464.

    CAS  Google Scholar 

  167. Lao, L., Song, X., & Xu, J. (2017). Effect of resveratrol in regulating proliferation and apoptosis of rectal cancer cells via up-regulating PTEN. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi=. China Journal of Chinese Materia Medica, 42(9), 1730–1735.

    Google Scholar 

  168. Liu, Z., et al. (2019). Resveratrol induces p53 in colorectal cancer through SET7/9. Oncology Letters, 17(4), 3783–3789.

    CAS  Google Scholar 

  169. Karimi Dermani, F., et al. (2017). Resveratrol inhibits proliferation, invasion, and epithelial–mesenchymal transition by increasing miR-200c expression in HCT-116 colorectal cancer cells. Journal of Cellular Biochemistry, 118(6), 1547–1555.

    CAS  Google Scholar 

  170. Kim, D. H., et al. (2017). Resveratrol analogue, HS-1793, induces apoptotic cell death and cell cycle arrest through downregulation of AKT in human colon cancer cells. Oncology Reports, 37(1), 281–288.

    Google Scholar 

  171. Cheah, F. K., et al. (2018). Resveratrol analogue, (E)-N-(2-(4-methoxystyryl) phenyl) furan-2-carboxamide induces G 2/M cell cycle arrest through the activation of p53–p21 CIP1/WAF1 in human colorectal HCT116 cells. Apoptosis, 23(5–6), 329–342.

    CAS  Google Scholar 

  172. Storniolo, C. E., & Moreno, J. J. (2018). Resveratrol analogs with antioxidant activity inhibit intestinal epithelial cancer Caco-2 cell growth by modulating arachidonic acid cascade. Journal of Agricultural and Food Chemistry, 67(3), 819–828.

    Google Scholar 

  173. El-Readi, M. Z., et al. (2019). Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine, 55, 269–281.

    CAS  Google Scholar 

  174. Buhrmann, C., et al. (2018). Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients, 10(7), 888.

    Google Scholar 

  175. Chung, S. S., et al. (2018). Combination of resveratrol and 5-fluorouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget, 9(68), 32943.

    Google Scholar 

  176. Gavrilas, L. I., et al. (2019). Pro-apoptotic genes as new targets for single and combinatorial treatments with resveratrol and curcumin in colorectal cancer. Food & Function, 10(6), 3717–3726.

    CAS  Google Scholar 

  177. Wu, J.-Y., et al. (2019). 3, 5, 4′-trimethoxy-trans-stilbene loaded PEG-PE micelles for the treatment of colon cancer. International Journal of Nanomedicine, 14, 7489.

    CAS  Google Scholar 

  178. Temraz, S., Mukherji, D., & Shamseddine, A. (2013). Potential targets for colorectal cancer prevention. International Journal of Molecular Sciences, 14(9), 17279–17303.

    Google Scholar 

  179. Chen, A., Xu, J., & Johnson, A. (2006). Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene, 25(2), 278–287.

    Google Scholar 

  180. Patel, B. B., et al. (2010). Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R. Anticancer Research, 30(2), 319–325.

    CAS  Google Scholar 

  181. Binion, D. G., Otterson, M. F., & Rafiee, P. (2008). Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut, 57(11), 1509–1517.

    CAS  Google Scholar 

  182. Greer, E. L., Banko, M. R., & Brunet, A. (2009). AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity. Annals of the New York Academy of Sciences, 1170, 688.

    CAS  Google Scholar 

  183. Ryu, M.-J., et al. (2008). Natural derivatives of curcumin attenuate the Wnt/β-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochemical and Biophysical Research Communications, 377(4), 1304–1308.

    CAS  Google Scholar 

  184. Liu, X., et al. (2016). LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nature Cell Biology, 18(4), 431–442.

    CAS  Google Scholar 

  185. Yu, H., et al. (2019). Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway. Technology in Cancer Research & Treatment, 18, 1533033819870781.

    CAS  Google Scholar 

  186. Kim, R. H., et al. (2005). DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell, 7(3), 263–273.

    CAS  Google Scholar 

  187. Shang, H., et al. (2019). Over-expression of DJ-1 attenuates effects of curcumin on colorectal cancer cell proliferation and apoptosis. European Review for Medical and Pharmacological Sciences, 23, 3080–3087.

    CAS  Google Scholar 

  188. Zhu, J., et al. (2018). Curcumin induces autophagy via inhibition of yes-associated protein (YAP) in human colon cancer cells. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 7035.

    CAS  Google Scholar 

  189. Hosseini, S. A., Zand, H., & Cheraghpour, M. (2019). The influence of curcumin on the downregulation of MYC, insulin and IGF-1 receptors: A possible mechanism underlying the anti-growth and anti-migration in chemoresistant colorectal cancer cells. Medicina, 55(4), 90.

    Google Scholar 

  190. Shakibaei, M., et al. (2013). Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One, 8(2), e57218.

    CAS  Google Scholar 

  191. Chen, G.-P., et al. (2017). Curcumin combined with cis-platinum promote the apoptosis of human colorectal cancer HT29 cells and mechanism. International Journal of Clinical and Experimental Pathology, 10(12), 11496–11505.

    Google Scholar 

  192. Selvam, C., et al. (2019). Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sciences, 117032.

    Google Scholar 

  193. Chung, S. S., et al. (2019). A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget, 10(44), 4516.

    Google Scholar 

  194. Sabra, R., Billa, N., & Roberts, C. J. (2019). Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. International Journal of Pharmaceutics, 572, 118775.

    CAS  Google Scholar 

  195. Qi, W., et al. (2011). Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer, 11(1), 219.

    CAS  Google Scholar 

  196. Zhou, P., et al. (2017). Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway. BMC Cancer, 17(1), 813.

    Google Scholar 

  197. Luo, Y., et al. (2014). Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-κB) pathway. Tumor Biology, 35(11), 11483–11488.

    CAS  Google Scholar 

  198. Qin, J., et al. (2016). Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells. Pharmaceutical Biology, 54(1), 74–79.

    CAS  Google Scholar 

  199. Qin, J., et al. (2015). Genistein inhibits human colorectal cancer growth and suppresses miR-95, Akt and SGK1. Cellular Physiology and Biochemistry, 35(5), 2069–2077.

    CAS  Google Scholar 

  200. Zhang, Z., et al. (2013). Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. International Journal of Oncology, 43(1), 289–296.

    CAS  Google Scholar 

  201. Zhang, Y., et al. (2013). Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/β-catenin signalling and reduces colon pre-neoplasia in rats. British Journal of Nutrition, 109(1), 33–42.

    CAS  Google Scholar 

  202. Zhu, J., Ren, J., & Tang, L. (2018). Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Molecular Medicine Reports, 17(5), 7265–7273.

    CAS  Google Scholar 

  203. Pintova, S., et al. (2019). Genistein combined with FOLFOX or FOLFOX–Bevacizumab for the treatment of metastatic colorectal cancer: Phase I/II pilot study. Cancer Chemotherapy and Pharmacology, 84(3), 591–598.

    CAS  Google Scholar 

  204. Pintova, S., et al. (2017). ME-143 is superior to genistein in suppression of WNT signaling in colon cancer cells. Anticancer Research, 37(4), 1647–1653.

    CAS  Google Scholar 

  205. Du, Q., et al. (2016). Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis. Oncotarget, 7(14), 17870.

    Google Scholar 

  206. Pool, H., et al. (2018). Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. American Journal of Translational Research, 10(8), 2306.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganji Purnachandra Nagaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Begum, D., Merchant, N., Nagaraju, G.P. (2020). Role of Specific Phytochemicals Against Gastrointestinal Malignancies. In: Nagaraju, G.P. (eds) Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-48405-7_1

Download citation

Publish with us

Policies and ethics