Skip to main content

Planar Optofluidics for On-Chip Particle Manipulation

  • Chapter
  • First Online:
Biomedical Optical Sensors

Abstract

Optical forces can be used to mechanically manipulate small particles on the micrometre and sub-micrometre scales. We review the recent development of planar optofluidic devices that harness optical forces to control particle movement on a chip. Complementary implementations using solid-core and liquid-core optical waveguides are described, along with potential applications in biosensing and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.N. Lebedev, Experimental examination of light pressure. Ann. Der Phys. 6, 433 (1901)

    Article  Google Scholar 

  2. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)

    Article  Google Scholar 

  3. A. Ashkin, J.M. Dziedzic, Optical levitation by radiation pressure. Appl. Phys. Lett. 19, 283 (1971)

    Article  Google Scholar 

  4. M.H. Anderson, J.R. Ensher, M.R. Matthews et al., Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Google Scholar 

  5. A. Ashkin, J.M. Dziedzicz, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)

    Article  Google Scholar 

  6. A. Ashkin, J.M. Dziedzicz, Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987)

    Article  Google Scholar 

  7. J.D. Wen, L. Lancaster, C. Hodges, A.C. Zeri, S.H. Yoshimura, H.F. Noller, C. Bustamante, I. Tinoco, Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008)

    Article  Google Scholar 

  8. C. Monat, P. Domachuk, B.J. Eggleton, Integrated optofluidics: a new river of light. Nat. Photonics 1, 106 (2007)

    Article  Google Scholar 

  9. D. Psaltis, S.R. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381 (2006)

    Article  Google Scholar 

  10. H. Schmidt, A.R. Hawkins, The photonic integration of non-solid media using optofluidics. Nat. Photonics 5, 598–604 (2011)

    Article  Google Scholar 

  11. X. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011)

    Article  Google Scholar 

  12. A.R. Hawkins, H. Schmidt (eds.), Handbook of Optofluidics (CRC Press, 2010). ISBN 9781420093544

    Google Scholar 

  13. B. Schelle, P. Dreß, H. Franke, K.F. Klein, J. Slupek, Physical characterization of lightguide capillary cells. J. Phys. D Appl. Phys. 32, 3157–3163 (1999)

    Article  Google Scholar 

  14. W.P. Risk, H.C. Kim, R.D. Miller, H. Temkin, S. Gangopadhyay, Optical waveguides with an aqueous core and a low-index nanoporous cladding. Opt. Exp. 12, 6446–6455 (2004)

    Article  Google Scholar 

  15. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructures. Opt. Lett. 29, 1209–1211 (2004)

    Article  Google Scholar 

  16. D.B. Wolfe, R.S. Conroy, P. Garstecki, B.T. Mayers, M.A. Fischbach, K.E. Paul, M. Prentiss, G.M. Whitesides, Dynamic control of liquid-core/liquid-cladding optical waveguides. PNAS 101, 12434–12438 (2004)

    Article  Google Scholar 

  17. J.-M. Lim, S.-H. Kim, J.-H. Choi, S.-M. Yang, Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources. Lab Chip 8, 1580–1585 (2008)

    Article  Google Scholar 

  18. G. Antonopoulos, F. Benabid, T.A. Birks, D.M. Bird, J.C. Knight, P.St.J. Russell, Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling. Opt. Express 14, 3000–3006 (2006)

    Google Scholar 

  19. R. Bernini, E. DeNuccio, A. Minardo, L. Zeni, P.M. Sarro, Liquid-core/liquid-cladding integrated silicon ARROW waveguides. Opt. Commun. 281, 2062–2066 (2008)

    Google Scholar 

  20. H. Schmidt, A.R. Hawkins, Optofluidic waveguides: I. Concepts and implementations. Microfluid. Nanofluid. 4, 3–16 (2008)

    Article  Google Scholar 

  21. A.R. Hawkins, H. Schmidt, Optofluidic waveguides: II. Fabrication and structures. Microfluid. Nanofluid. 4, 17–32 (2008)

    Article  Google Scholar 

  22. S. Kawata, T. Tani, Optically driven Mie particles in an evanescent field along a channeled waveguide. Opt. Lett. 21, 1768–1770 (1996)

    Article  Google Scholar 

  23. B.S. Schmidt, A.H.J. Yang, D. Erickson, M. Lipson, Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt. Express 15, 14322–14334 (2007)

    Article  Google Scholar 

  24. S. Gaugiran, S. Getin, J.M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, Optical manipulation of microparticles and cells on silicon nitride waveguides. Opt. Express 13, 6956–6963 (2005)

    Article  Google Scholar 

  25. H. Cai, A. Poon, Optical manipulation of microbeads in an integrated optofluidic device, in Proceedings of Conference on Lasers and Electro-Optics, San Jose, CA, USA, 16–21 May 2010

    Google Scholar 

  26. S. Gaugiran, S. Getin, J.M. Fedeli, J. Derouard, Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces. Opt. Express 15, 8146–8156 (2007)

    Article  Google Scholar 

  27. D. Neel, S. Getin, P. Ferret, M. Rosina, J.M. Fedeli, O.G. Helleso, Optical transport of semiconductor nanowires on silicon nitride waveguides. Appl. Phys. Lett. 94, 253115 (2009)

    Article  Google Scholar 

  28. H. Cai, A.W. Poon, Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip. Lab Chip 12, 3803–3809 (2012)

    Article  Google Scholar 

  29. H. Cai, A.W. Poon, Planar optical tweezers using tapered-waveguide junctions. Opt. Lett. 37, 3000–3002 (2012)

    Article  Google Scholar 

  30. K. Grujic, O.G. Helleso, J.P. Hole, J.S. Wilkinson, Sorting of polystyrene microspheres using a Y-branched optical waveguide. Opt. Express 13, 1–7 (2005)

    Article  Google Scholar 

  31. R. Ulrich, T. Kamiya, Resolution of self-images in planar optical-waveguides. J. Opt. Soc. Am. 68, 583–592 (1978)

    Article  Google Scholar 

  32. L.B. Soldano, E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. IEEE J. Lightwave Technol. 13, 615–627 (1995)

    Article  Google Scholar 

  33. H. Cai, A.W. Poon, Optofluidic microparticle splitters using multimode-interference-based power splitters, in Conference on Lasers and Electro-Optics, San Jose, CA, USA, paper CTu2L.5, 6–11 May 2012

    Google Scholar 

  34. L.-C. Hsu, T.-C. Chen, Y.-T. Yang, C.-Y. Huang, D.-W. Shen, Y.-T. Chen, M.-C.M. Lee, Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices. Lab Chip 13, 1151–1155 (2013)

    Article  Google Scholar 

  35. S.Y. Lin, K.B. Crozier, An integrated microparticle sorting system based on near-field optical forces and a structural perturbation. Opt. Express 20, 3367–3374 (2012)

    Google Scholar 

  36. S. Mandal, X. Serey, D. Erickson, Nanomanipulation using silicon photonic crystal resonators. Nano Lett. 10, 99–104 (2010)

    Article  Google Scholar 

  37. T. van Leest, J. Caro, Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. Lab Chip 13, 4358–4365 (2013)

    Article  Google Scholar 

  38. C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, F. De Fornel, On chip shapeable optical tweezers. Sci. Rep. 3, 2290 (2013)

    Article  Google Scholar 

  39. Y.F. Chen, X. Serey, R. Sarkar, P. Chen, D. Erickson, Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett. 12, 1633–1637 (2012)

    Article  Google Scholar 

  40. B.E. Little, J.S. Foresi, G. Steinmeyer, E.R. Thoen, S.T. Chu, H.A. Haus, E.P. Ippen, L.C. Kimerling, W. Greene, Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photonics Technol. Lett. 10, 549–551 (1998)

    Article  Google Scholar 

  41. S.T. Chu, B.E. Little, W.G. Pan, T. Kaneko, Y. Kokubun, Second-order filter response from parallel coupled glass microring resonators. IEEE Photonics Technol. Lett. 11, 1426–1428 (1999)

    Article  Google Scholar 

  42. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  Google Scholar 

  43. T.J. Kippenberg, S.M. Spillane, D.K. Armani, K.J. Vahala, Fabrication and coupling to planar high-Q silica disk microcavities. Appl. Phys. Lett. 83, 797–799 (2003)

    Article  Google Scholar 

  44. P. Koonath, T. Indukuri, B. Jalali, Add-drop filters utilizing vertically coupled microdisk resonators in silicon. Appl. Phys. Lett. 86, 091102 (2005)

    Article  Google Scholar 

  45. A.H.J. Yang, D. Erickson, Optofluidic ring resonator switch for optical particle transport. Lab Chip 10, 769–774 (2010)

    Article  Google Scholar 

  46. S.Y. Lin, E. Schonbrun, K. Crozier, Optical manipulation with planar silicon microring resonators. Nano Lett. 10, 2408–2411 (2010)

    Article  Google Scholar 

  47. H. Cai, A.W. Poon, Optical manipulation and transport of microparticles on a silicon nitride microracetrack resonator add-drop device, in IEEE 7th International Conference on Group IV Photonics, Beijing, China, 1–3 Sept 2010

    Google Scholar 

  48. H. Cai, A.W. Poon, Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices. Opt. Lett. 35, 2855–2857 (2010)

    Article  Google Scholar 

  49. S.Y. Lin, K.B. Crozier, Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. Lab Chip 11, 4047–4051 (2011)

    Article  Google Scholar 

  50. J. Wang, A.W. Poon, Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices. Lab Chip (2014). https://doi.org/10.1039/c3lc51186c

  51. H. Cai, A.W. Poon, Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator. Opt. Lett. 36, 4257–4259 (2011)

    Article  Google Scholar 

  52. M.J. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, E.A. Cornell, Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 75, 3253 (1995)

    Article  Google Scholar 

  53. S. Mandal, D. Erickson, Optofluidic transport in liquid core waveguiding structures. Appl. Phys. Lett. 90, 184103 (2007)

    Article  Google Scholar 

  54. S. Cran-McGreehin, T.F. Krauss, K. Dholakia, Integrated monolithic optical manipulation. Lab Chip 6, 1122 (2006)

    Article  Google Scholar 

  55. A.H.J. Yang, S.D. Moore, B.S. Schmidt, M. Klug, M. Lipson, D. Erickson, Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009)

    Article  Google Scholar 

  56. N. Bellini, R. Osellame, K.C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt. Express 18, 4679–4688 (2010)

    Article  Google Scholar 

  57. M.A. Duguay, Y. Kokubun, T.L. Koch, L. Pfeiffer, Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 49, 13 (1986)

    Article  Google Scholar 

  58. R. Bernini, S. Campopiano, L. Zeni, Silicon micromachined hollow optical waveguides for sensing applications. IEEE J. Sel. Top. Quantum Electron. 8, 106–110 (2002)

    Article  Google Scholar 

  59. D. Yin, H. Schmidt, J.P. Barber, A.R. Hawkins, Integrated ARROW waveguides with hollow cores. Opt. Express 12, 2710 (2004)

    Article  Google Scholar 

  60. D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, Single-molecule detection sensitivity using planar integrated optics on a chip. Opt. Lett. 31, 2136 (2006)

    Article  Google Scholar 

  61. P. Measor, L. Seballos, D. Yin, J.Z. Zhang, E.J. Lunt, A.R. Hawkins, H. Schmidt, On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl. Phys. Lett. 90, 211107 (2007)

    Article  Google Scholar 

  62. D. Yin, E.J. Lunt, M.I. Rudenko, D.W. Deamer, A.R. Hawkins, H. Schmidt, Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 7, 1171 (2007)

    Article  Google Scholar 

  63. P. Measor, S. Kühn, E.J. Lunt, B.S. Phillips, A.R. Hawkins, H. Schmidt, Hollow-core waveguide characterization by optically induced particle transport. Opt. Lett. 7, 672–674 (2008)

    Article  Google Scholar 

  64. S. Kühn, P. Measor, E.J. Lunt, B.S. Phillips, D.W. Deamer, A.R. Hawkins, H. Schmidt, Loss-based optical trap for on-chip particle analysis. Lab Chip 9, 2212 (2009)

    Article  Google Scholar 

  65. K.D. Leake, B.S. Phillips, T.D. Yuzvinsky, A.R. Hawkins, H. Schmidt, Optical particle sorting on an optofluidic chip. Opt. Express 21, 32605 (2013)

    Article  Google Scholar 

  66. P. Measor, S. Kühn, E.J. Lunt, B.S. Phillips, A.R. Hawkins, H. Schmidt, Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing. Opt. Express 17, 24342–24348 (2009)

    Article  Google Scholar 

  67. S.B. Kim, S.S. Kim, Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime. JOSA B 23, 897–903 (2006)

    Article  Google Scholar 

  68. S. Kühn, E.J. Lunt, B.S. Phillips, A.R. Hawkins, H. Schmidt, Optofluidic particle concentration by a long-range dual-beam trap. Opt. Lett. 34, 2306–2308 (2009)

    Article  Google Scholar 

  69. K.D. Leake, A.R. Hawkins, H. Schmidt, All-optical particle trap using orthogonally intersecting beams. Photonics Res. 1, 47 (2013)

    Article  Google Scholar 

  70. S. Kühn, B.S. Phillips, E.J. Lunt, A.R. Hawkins, H. Schmidt, Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. Lab Chip 10, 189–194 (2010)

    Article  Google Scholar 

  71. J. Enderlein, Trapping of fluorescent molecules diffusing within membranes. Appl. Phys. B 71, 773–777 (2000)

    Article  Google Scholar 

  72. A.E. Cohen, W.E. Moerner, Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. Opt. Express 16, 6941 (2008)

    Article  Google Scholar 

  73. A.P. Fields, A.E. Cohen, Electrokinetic trapping at the one nanometer limit. Proc. Natl. Acad. Sci. 108, 8937–8942 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work by the National Institutes of Health (grants R21EB003430, R01EB006097, and 1R21AI100229), the National Science Foundation (grants ECS-0528730, CBET-1159453, CBET-1159423, CBET-1402848, and CBET-1402880), the Rogers Family Foundation, the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR 0011-10-1-0075, and the W.M. Keck Foundation through the W.M. Keck Center for Nanoscale Optofluidics at UC Santa Cruz, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, H., Leake, K.D., Schmidt, H. (2020). Planar Optofluidics for On-Chip Particle Manipulation. In: De La Rue, R., Herzig, H.P., Gerken, M. (eds) Biomedical Optical Sensors. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-48387-6_7

Download citation

Publish with us

Policies and ethics