Skip to main content

Intraoperative Echo in TBI

  • Chapter
  • First Online:
Echography and Doppler of the Brain

Abstract

Traumatic brain injuries (TBIs) are common neurosurgical emergencies that, in many cases, require fast decision-making and surgical management. In particular, the surgical strategy in these cases may unpredictably be modified because traumatic brain lesions may change over time from the first radiological picture to the time of surgery. For this reason, real-time imaging may offer the opportunity to overcome such problems and help neurosurgeons to get a quick management of intraoperative problems related to unexpected evolution of traumatic brain lesions.

One of the most useful instruments can be the intraoperative ultrasound (ioUS) that can allow to have an immediate picture of both surgical site and contralateral site. Despite the efficient performance of ioUS, in literature the use of such instruments during surgery for TBIs is underestimated and this fact may be related with many reasons like lack of routinary use, difficulty in introducing a new instrument in the emergency setting, or lack of a constant use during elective cases and possible misinterpretations of the scans.

In this chapter we are dealing with the possible roles for ioUS in the management of TBIs in terms of actual knowledge and possible future perspectives with advanced imaging. This chapter is also meant to be used as a brief guide for those who are interested in introducing the routinary use of iOUS in the management of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2016;80(1):6.

    Article  Google Scholar 

  2. Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J Rehabil Res Dev. 2009;46:CP1–68.

    Article  Google Scholar 

  3. Vella MA, Crandall ML, Patel MB. Acute management of traumatic brain injury. Surg Clin North Am. 2017;97:1015–30.

    Article  Google Scholar 

  4. Murray GD, Brennan PM, Teasdale GM. Simplifying the use of prognostic information in traumatic brain injury. Part 2: graphical presentation of probabilities. J Neurosurg. 2018;128:1621–34.

    Article  Google Scholar 

  5. Brennan PM, Murray GD, Teasdale GM. Simplifying the use of prognostic information in traumatic brain injury. Part 1: the GCS-pupils score: an extended index of clinical severity. J Neurosurg. 2018;128:1612–20.

    Article  Google Scholar 

  6. Shen J, Pan JW, Fan ZX, Zhou YQ, Chen Z, Zhan RY. Surgery for contralateral acute epidural hematoma following acute subdural hematoma evacuation: five new cases and a short literature review. Acta Neurochir. 2013;155:335–41.

    Article  Google Scholar 

  7. Kim PS, Yu SH, Lee JH, Choi HJ, Kim BC. Intraoperative transcranial sonography for detection of contralateral hematoma volume change in patients with traumatic brain injury. Korean J Neurotrauma. 2017;13:137.

    Article  Google Scholar 

  8. Su T-M, Lee T-H, Chen W-F, Lee T-C, Cheng C-H. Contralateral acute epidural hematoma after decompressive surgery of acute subdural hematoma: clinical features and outcome. J Trauma. 2008;65:1298–302.

    Article  Google Scholar 

  9. Choi YH, Lim TK, Lee SG. Clinical features and outcomes of bilateral decompression surgery for immediate contralateral hematoma after craniectomy following acute subdural hematoma. Korean J Neurotrauma. 2017;13:108.

    Article  Google Scholar 

  10. Moiyadi A, Shetty P. Objective assessment of utility of intraoperative ultrasound in resection of central nervous system tumors: a cost-effective tool for intraoperative navigation in neurosurgery. J Neurosci Rural Pract. 2011;02:004–11.

    Article  Google Scholar 

  11. Pino M, Imperato A, Musca I, et al. New hope in brain glioma surgery: the role of intraoperative ultrasound. A Review. Brain Sci. 2018;8:202.

    Article  Google Scholar 

  12. Velthoven V. Intraoperative ultrasound imaging: comparison of pathomorphological findings in US versus CT, MRI and intraoperative findings. In: Bernays RL, Imhof H-G, Yonekawa Y, editors. Intraoperative imaging neurosurgery. Vienna: Springer Vienna; 2003. p. 95–9.

    Chapter  Google Scholar 

  13. Sun H, Zhao JZ. Application of intraoperative ultrasound in neurological surgery. Minim Invasive Neurosurg. 2007;50:155–9.

    Article  CAS  Google Scholar 

  14. Mannaerts CK, Wildeboer RR, Postema AW, Hagemann J, Budäus L, Tilki D, Mischi M, Wijkstra H, Salomon G. Multiparametric ultrasound: evaluation of greyscale, shear wave elastography and contrast-enhanced ultrasound for prostate cancer detection and localization in correlation to radical prostatectomy specimens. BMC Urol. 2018;18:98.

    Article  Google Scholar 

  15. Prada F, Del Bene M, Faragò G, DiMeco F. Spinal dural arteriovenous fistula: is there a role for intraoperative contrast-enhanced ultrasound? World Neurosurg. 2017;100:712.e15–8.

    Article  Google Scholar 

  16. Bartels E. Evaluation of arteriovenous malformations (AVMs) with transcranial color-coded duplex sonography: does the location of an AVM influence its sonographic detection? J Ultrasound Med. 2005;24:1511–7.

    Article  Google Scholar 

  17. Prada F, Del Bene M, Moiraghi A, et al. From grey scale B-mode to elastosonography: multimodal ultrasound imaging in meningioma surgery—pictorial essay and literature review. Biomed Res Int. 2015;2015:1–13.

    Article  Google Scholar 

  18. Del Bene M, Perin A, Casali C, Legnani F, Saladino A, Mattei L, Vetrano IG, Saini M, DiMeco F, Prada F. Advanced ultrasound imaging in glioma surgery: beyond gray-scale B-mode. Front Oncol. 2018;8:576.

    Article  Google Scholar 

  19. Chauvet D, Imbault M, Capelle L, Demene C, Mossad M, Karachi C, Boch A-L, Gennisson J-L, Tanter M. In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall Med. 2016;37:584–90.

    CAS  PubMed  Google Scholar 

  20. Prada F, Bene MD, Fornaro R, et al. Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus. 2016;40:E7.

    Article  Google Scholar 

  21. Mattei L, Prada F, Marchetti M, Gaviani P, DiMeco F. Differentiating brain radionecrosis from tumour recurrence: a role for contrast-enhanced ultrasound? Acta Neurochir. 2017;159:2405–8.

    Article  Google Scholar 

  22. Sastry R, Bi WL, Pieper S, Frisken S, Kapur T, Wells W, Golby AJ. Applications of ultrasound in the resection of brain tumors: ultrasound in brain tumor resection. J Neuroimaging. 2017;27:5–15.

    Article  Google Scholar 

  23. Reinertsen I, Lindseth F, Askeland C, Iversen DH, Unsgård G. Intra-operative correction of brain-shift. Acta Neurochir. 2014;156:1301–10.

    Article  Google Scholar 

  24. Giussani C, Riva M, Djonov V, Beretta S, Prada F, Sganzerla E. Brain ultrasound rehearsal before surgery: a pilot cadaver study: cerebral ultrasound in cadaveric heads. Clin Anat. 2017;30:1017–23.

    Article  Google Scholar 

  25. Coburger J, Scheuerle A, Pala A, Thal D, Wirtz CR, König R. Histopathological insights on imaging results of intraoperative magnetic resonance imaging, 5-aminolevulinic acid, and intraoperative ultrasound in glioblastoma surgery. Neurosurgery. 2017;81:165–74.

    Article  Google Scholar 

  26. Prada F, Gennari AG, Del Bene M, Bono BC, Quaia E, D’Incerti L, Villani F, Didato G, Tringali G, DiMeco F. Intraoperative ultrasonography (ioUS) characteristics of focal cortical dysplasia (FCD) type II b. Seizure. 2019;69:80–6.

    Article  Google Scholar 

  27. Unsgård G, Rao V, Solheim O, Lindseth F. Clinical experience with navigated 3D ultrasound angiography (power Doppler) in microsurgical treatment of brain arteriovenous malformations. Acta Neurochir. 2016;158:875–83.

    Article  Google Scholar 

  28. Prada F, Del Bene M, Saini M, Ferroli P, DiMeco F. Intraoperative cerebral angiosonography with ultrasound contrast agents: how I do it. Acta Neurochir. 2015;157:1025–9.

    Article  Google Scholar 

  29. Manfield JH, Yu KKH. Real-time ultrasound-guided external ventricular drain placement: technical note. Neurosurg Focus. 2017;43:E5.

    Article  Google Scholar 

  30. Park H, Lee Y, Oh S, Lee HJ. Successful treatment with ultrasound-guided aspiration of intractable methicillin-resistant Staphylococcus aureus brain abscess in an extremely low birth weight infant. Pediatr Neurosurg. 2015;50:210–5.

    Article  Google Scholar 

  31. Heppner P, Ellegala DB, Durieux M, Jane JA, Lindner JR. Contrast ultrasonographic assessment of cerebral perfusion in patients undergoing decompressive craniectomy for traumatic brain injury. J Neurosurg. 2006;104:738–45.

    Article  Google Scholar 

  32. He W, Wang L-S, Li H-Z, Cheng L-G, Zhang M, Wladyka CG. Intraoperative contrast-enhanced ultrasound in traumatic brain surgery. Clin Imaging. 2013;37:983–8.

    Article  Google Scholar 

  33. Xu ZS, Yao A, Chu SS, Paun MK, McClintic AM, Murphy SP, Mourad PD. Detection of mild traumatic brain injury in rodent models using shear wave elastography: preliminary studies. J Ultrasound Med. 2014;33:1763–71.

    Article  Google Scholar 

  34. Sarà M, Sorpresi F, Guadagni F, Pistoia F. Real-time ultrasonography in craniectomized severely brain injured patients. Ultrasound Med Biol. 2009;35:169–70.

    Article  Google Scholar 

  35. Sadahiro H, Nomura S, Goto H, Sugimoto K, Inamura A, Fujiyama Y, Yamane A, Oku T, Shinoyama M, Suzuki M. Real-time ultrasound-guided endoscopic surgery for putaminal hemorrhage. J Neurosurg. 2015;123:1151–5.

    Article  Google Scholar 

  36. Bobinger T, Huttner HB, Schwab S. Bedside ultrasound after decompressive craniectomy: a new standard? Neurocrit Care. 2017;26:319–20.

    Article  CAS  Google Scholar 

  37. Prada F, Del Bene M, Rampini A, et al. Intraoperative strain elastosonography in brain tumor surgery. Oper Neurosurg. 2019;17:227–36.

    Article  Google Scholar 

  38. Xu ZS, Lee RJ, Chu SS, Yao A, Paun MK, Murphy SP, Mourad PD. Evidence of changes in brain tissue stiffness after ischemic stroke derived from ultrasound-based elastography. J Ultrasound Med. 2013;32:485–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Giussani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giussani, C., Sganzerla, E.P., Prada, F., Di Cristofori, A. (2021). Intraoperative Echo in TBI. In: Robba, C., Citerio, G. (eds) Echography and Doppler of the Brain. Springer, Cham. https://doi.org/10.1007/978-3-030-48202-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48202-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48201-5

  • Online ISBN: 978-3-030-48202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics