Skip to main content

Convergence and Stability of Particle Filters

  • Chapter
  • First Online:
An Introduction to Sequential Monte Carlo

Part of the book series: Springer Series in Statistics ((SSS))

  • 5556 Accesses

Summary

This chapter is an introduction to the theoretical study of particle estimates: how they converge as N → +, and whether their error stays stable over time. The focus is on results that are easy to prove from first principles. References to more technical results are given in the bibliography at the end of the chapter.

A key idea is that the error of a particle estimate at time t may be decomposed into a sum of ‘local’ errors that correspond to the previous time steps 0, 1, …, t. In that spirit, most proofs will rely on an induction argument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Billingsley, P. (2012). Probability and measure (anniversary edition). Wiley series in probability and statistics. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Cérou, F., Del Moral, P., & Guyader, A. (2011). A nonasymptotic theorem for unnormalized Feynman-Kac particle models. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques, 47(3), 629–649.

    Article  MathSciNet  Google Scholar 

  • Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics, 32(6), 2385–2411.

    Article  MathSciNet  Google Scholar 

  • Crisan, D., & Doucet, A. (2002). A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing, 50(3), 736–746.

    Article  MathSciNet  Google Scholar 

  • Del Moral, P. (2004). Feynman-Kac formulae. Genealogical and interacting particle systems with applications. Probability and its applications. New York: Springer.

    MATH  Google Scholar 

  • Del Moral, P., & Guionnet, A. (1999). Central limit theorem for nonlinear filtering and interacting particle systems. Annals of Applied Probability, 9(2), 275–297.

    Article  MathSciNet  Google Scholar 

  • Del Moral, P., & Guionnet, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques, 37(2), 155–194.

    Article  MathSciNet  Google Scholar 

  • Douc, R., Garivier, A., Moulines, E., & Olsson, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Annals of Applied Probability, 21(6), 2109–2145.

    Article  MathSciNet  Google Scholar 

  • Douc, R., & Moulines, E. (2008). Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Annals of Statistics, 36(5), 2344–2376.

    Article  MathSciNet  Google Scholar 

  • Douc, R., Moulines, E., & Olsson, J. (2014). Long-term stability of sequential Monte Carlo methods under verifiable conditions. Annals of Applied Probability, 24(5), 1767–1802.

    Article  MathSciNet  Google Scholar 

  • Gerber, M., Chopin, N., & Whiteley, N. (2019). Negative association, ordering and convergence of resampling methods. Annals of Statistics, 47(4), 2236–2260.

    Article  MathSciNet  Google Scholar 

  • Künsch, H. R. (2001). State space and hidden Markov models. In O. E. Barndorff-Nielsen, D. R. Cox, & C. Klüppelberg (Eds.), Complex stochastic systems (Eindhoven, 1999). Monographs on statistics and applied probability (Vol. 87, pp. 109–173). Boca Raton, FL: Chapman and Hall/CRC.

    Google Scholar 

  • Künsch, H. R. (2005). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Annals of Statistics, 33(5), 1983–2021.

    Article  MathSciNet  Google Scholar 

  • Le Gland, F., & Oudjane, N. (2004). Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. Annals of Applied Probability, 14(1), 144–187.

    Article  MathSciNet  Google Scholar 

  • Oudjane, N., & Rubenthaler, S. (2005). Stability and uniform particle approximation of nonlinear filters in case of non ergodic signals. Stochastic Analysis and Applications, 23(3), 421–448.

    Article  MathSciNet  Google Scholar 

  • van Handel, R. (2009). Uniform time average consistency of Monte Carlo particle filters. Stochastic Processes and Their Applications, 119(11), 3835–3861.

    Article  MathSciNet  Google Scholar 

  • Whiteley, N. (2013). Stability properties of some particle filters. Annals of Applied Probability, 23(6), 2500–2537.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chopin, N., Papaspiliopoulos, O. (2020). Convergence and Stability of Particle Filters. In: An Introduction to Sequential Monte Carlo. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-47845-2_11

Download citation

Publish with us

Policies and ethics