Skip to main content

Structure and Function of the Microcirculation

  • Chapter
  • First Online:
Microcirculation in Cardiovascular Diseases

Abstract

The small arteries and the arterioles contribute substantially to the hydrodynamic resistance in the circulation. In some vascular beds, up to 80% of the pressure drop in the circulation occurs proximal to the capillaries. Also the distribution of the pressure drop between small arteries and arterioles varies between different vascular beds, but a substantial part of it is mediated by arteries with diameters larger than 50 μm. The structure of the small arteries and arterioles is of substantial importance for the resistance they produce, and the ratio between the thickness of the media wall and the lumen diameter is an important determinant of the effect on resistance of a given level of smooth muscle activation. This ratio is increased in small arteries from patients with hypertension. In both untreated and treated patients, the ratio has prognostic significance, and it appears to be an important aim of treatment to normalize the ratio. Also the tone of small arteries, determined by the activation of the smooth muscle cells, plays a key role in determining resistance. Smooth muscle cell activation is dependent on the intracellular Ca2+ concentration but also the sensitivity of the contractile machinery to Ca2+. Most small arteries and arterioles have an oscillation of tone, which is referred to as vasomotion. Vasomotion is dependent on a cellular oscillator and is a result of synchronization of the oscillatory contraction of the smooth muscle cells. One such pathway involves a Ca2+ activated, cGMP-dependent Cl conductance. The physiological or pathophysiological consequence of vasomotion is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis MJ, Ferrer PN, Gore RW. Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol. 1986;250:H291–303.

    CAS  PubMed  Google Scholar 

  2. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70:921–61.

    Google Scholar 

  3. Rhodin JAG. Architecture of the vessel wall. In: Bohr DF, Somlyo AP, Sparks HV, editors. Handbook of physiology, section 2, the cardiovascular system, volume 2, vascular smooth muscle. American Physiological Society: Bethesda, MD; 1980.

    Google Scholar 

  4. Shore AC. Capillaroscopy and the measurement of capillary pressure. Br J Clin Pharmacol. 2000;50:501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Graaff JC, Ubbink DT, Lagarde SM, Jacobs MJ. Postural changes in capillary pressure in the hallux of healthy volunteers. J Appl Physiol. 2003;95:2223–8.

    Google Scholar 

  6. Williams SA, Boolell M, Macgregor GA, Smaje LH, Wasserman SM, Tooke JE. Capillary hypertension and abnormal pressure dynamics in patients with essential hypertension. Clin Sci (Lond). 1990;79:5–8.

    Article  CAS  Google Scholar 

  7. Sandeman DD, Shore AC, Tooke JE. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med. 1992;327:760–4.

    Article  CAS  PubMed  Google Scholar 

  8. Intaglietta M, Pawula RF, Tompkins WR. Pressure measurements in the mammalian microvasculature. Microvasc Res. 1970;2:212–20.

    Article  CAS  PubMed  Google Scholar 

  9. Gore RW, Bohlen HG. Microvascular pressures in rat intestinal muscle and mucosal villi. Am J Physiol. 1977;233:H685–93.

    CAS  PubMed  Google Scholar 

  10. Joyner WL, Davis MJ, Gilmore JP. Intravascular pressure distribution and dimensional analysis of microvessels in hamsters with renovascular hypertension. Microvasc Res. 1981;22:190–8.

    Article  CAS  PubMed  Google Scholar 

  11. Faraci FM, Mayhan WG, Heistad DD. Segmental vascular responses to acute hypertension in cerebrum and brain stem. Am J Phys. 1987;252:H738–42.

    CAS  Google Scholar 

  12. Zweifach BW. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ Res. 1974;34:843–57.

    CAS  PubMed  Google Scholar 

  13. Meininger GA, Fehr KL, Yates MB. Anatomic and hemodynamic characteristics of the blood vessels feeding the cremaster skeletal muscle in the rat. Microvasc Res. 1987;33:81–97.

    Article  CAS  PubMed  Google Scholar 

  14. Delano FA, Schmid Schonbein GW, Skalak TC, Zweifach BW. Penetration of the systemic blood pressure into the microvasculature of rat skeletal muscle. Microvasc Res. 1991;41:92–110.

    Article  CAS  PubMed  Google Scholar 

  15. Blanco PJ, Muller LO, Spence JD. Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol. 2017;2:108–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fenger Gron J, Mulvany MJ, Christensen KL. Mesenteric blood pressure profile of conscious, freely moving rats. J Physiol Lond. 1995;488:753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fenger Gron J, Mulvany MJ, Christensen KL. Intestinal blood flow is controlled by both feed arteries and microcirculatory resistance vessels in freely moving rats. J Physiol Lond. 1997;498:215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mulvany M, Agabiti-Rosei E, Struijker-Boudier H. Structural cardiovascular changes in hypertension. In: Mancia G, Grassi G, Tsioufis K, Dominiczak A, Agabiti-Rosei E, editors. Manual of hypertension: European Society of Hypertension. 2019;81–8.

    Google Scholar 

  19. Folkow B. Structural, myogenic, humoral and nervous factors controlling peripheral resistance. In: Harington M, editor. Hypotensive Drugs. London: Pergamon; 1956.

    Google Scholar 

  20. Schafer S, Kelm M, Mingers S, Strauer BE. Left ventricular remodeling impairs coronary flow reserve in hypertensive patients. J Hypertens. 2002;20:1431–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ruedemann AD. Conjunctival vessels. J Am Med Assoc. 1933;101:1427–81.

    Article  Google Scholar 

  22. Antonios TF, Singer DR, Markandu ND, Mortimer PS, Macgregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33:998–1001.

    Article  CAS  PubMed  Google Scholar 

  23. Struijker Boudier HA, Le Noble JL, Messing MW, Huijberts MS, Le Noble FA, Van Essen H. The microcirculation and hypertension. J Hypertens Suppl. 1992;10:S147–56.

    Article  CAS  PubMed  Google Scholar 

  24. Agabiti-Rosei E, Rizzoni D. Microvascular structure as a prognostically relevant endpoint. J Hypertens. 2017;35:914–21.

    Article  CAS  PubMed  Google Scholar 

  25. Antonios TF, Rattray FM, Singer DR, Markandu ND, Mortimer PS, Macgregor GA. Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension. Heart. 2003;89:175–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aalkjaer C, Heagerty AM, Petersen KK, Swales JD, Mulvany MJ. Evidence for increased media thickness, increased neuronal amine uptake, and depressed excitation-contraction coupling in isolated resistance vessels from essential hypertensives. Circ Res. 1987;61:181–6.

    Article  CAS  PubMed  Google Scholar 

  27. Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17:1192–200.

    Article  CAS  PubMed  Google Scholar 

  28. Aalkjaer C, Heagerty AM, Bailey I, Mulvany MJ, Swales JD. Studies of isolated resistance vessels from offspring of essential hypertensive patients. Hypertension. 1987;9(Suppl III):III-155–8.

    Google Scholar 

  29. Bruno RM, Duranti E, Ippolito C, Segnani C, Bernardini N, Di Candio G, Chiarugi M, Taddei S, Virdis A. Different impact of essential hypertension on structural and functional age-related vascular changes. Hypertension. 2017;69:71–8.

    Google Scholar 

  30. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ. Small artery structure in hypertension—dual processes of remodeling and growth. Hypertension. 1993;21:391–7.

    Article  CAS  PubMed  Google Scholar 

  31. Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, Heistad DD. Vascular remodelling (letter to editor). Hypertension. 1996;28:505–6.

    CAS  PubMed  Google Scholar 

  32. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens. 2001;19:921–30.

    Article  CAS  PubMed  Google Scholar 

  33. Eftekhari A, Mathiassen ON, Buus NH, Gotzsche O, Mulvany MJ, Christensen KL. Disproportionally impaired microvascular structure in essential hypertension. J Hypertens. 2011;29:896–905.

    Article  CAS  PubMed  Google Scholar 

  34. Intengan HD, Deng LY, Li JS, Schiffrin EL. Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Hypertension. 1999;33:569–74.

    Google Scholar 

  35. Mathiassen ON, Buus NH, Larsen ML, Mulvany MJ, Christensen KL. Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens. 2007;25:1027–34.

    Article  CAS  PubMed  Google Scholar 

  36. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti-Rosei E. Prognostic significance of small-artery structure in hypertension. Circulation. 2003;108:2230–5.

    Article  PubMed  Google Scholar 

  37. Buus NH, Mathiassen ON, Fenger-Gron M, Praestholm MN, Sihm I, Thybo NK, Schroeder AP, Thygesen K, Aalkjaer C, Pedersen OL, Mulvany MJ, Christensen KL. Small artery structure during antihypertensive therapy is an independent predictor of cardiovascular events in essential hypertension. J Hypertens. 2013;31:791–7.

    Article  CAS  PubMed  Google Scholar 

  38. Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005;23:247–50.

    Article  CAS  PubMed  Google Scholar 

  39. Mulvany MJ. Small artery remodeling and significance in the development of hypertension. News Physiol Sci. 2002;17:105–9.

    PubMed  Google Scholar 

  40. Castorena-Gonzalez JA, Staiculescu MC, Foote C, Martinez-Lemus LA. Mechanisms of the inward remodeling process in resistance vessels: is the actin cytoskeleton involved? Microcirculation. 2014;21:219–29.

    Google Scholar 

  41. Rizzoni D, Muiesan ML. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens. 2014;32:225–7.

    Google Scholar 

  42. Witt N, Wong TY, Hughes AD, Chaturvedi N, Klein BE, Evans R, Mcnamara M, Thom SA, Klein R. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension. 2006;47:975–81.

    Google Scholar 

  43. Wong TY, Mitchell P. Hypertensive retinopathy. N Engl J Med. 2004;351:2310–7.

    Article  CAS  PubMed  Google Scholar 

  44. Cuspidi C, Sala C. Do microvascular retinal changes improve cardiovascular risk estimation? J Hypertens. 2012;30:682–4.

    Article  CAS  PubMed  Google Scholar 

  45. Ritt M, Harazny JM, Ott C, Schlaich MP, Schneider MP, Michelson G, Schmieder RE. Analysis of retinal arteriolar structure in never-treated patients with essential hypertension. J Hypertens. 2008;26:1427–34.

    Article  CAS  PubMed  Google Scholar 

  46. Gallo A, Mattina A, Rosenbaum D, Koch E, Paques M, Girerd X. Retinal arteriolar remodeling evaluated with adaptive optics camera: relationship with blood pressure levels. Annales de Cardiologie et d'Angeiologie. 2016;65:203–7.

    Article  CAS  PubMed  Google Scholar 

  47. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83:1325–58.

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt JA. Periodic hemodynamics in health and disease. Heidelberg, Berlin: Springer; 1996.

    Google Scholar 

  49. Aalkjaer C, Nilsson H. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol. 2005;144:605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jackson WF, Mulsch A, Busse R. Rhythmic smooth muscle activity in hamster aortas is mediated by continuous release of NO from the endothelium. Am J Phys. 1991;260:H248–53.

    CAS  Google Scholar 

  51. Palacios J, Vega JL, Paredes A, Cifuentes F. Effect of phenylephrine and endothelium on vasomotion in rat aorta involves potassium uptake. J Physiol Sci. 2013;63:103–11.

    Article  CAS  PubMed  Google Scholar 

  52. Jones TW. Discovery that the veins of the bat's wing are endowed with rhythmical contractility and that onward flow of blood is accelerated by each contraction. Phil Trans Roy Soc Lond. 1852;142:131–6.

    Article  Google Scholar 

  53. Garland CJ. Influence of the endothelium and alpha-adrenoreceptor antagonists on responses to noradrenaline in the rabbit basilar artery. J Physiol. 1989;418:205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gustafsson H, Mulvany MJ, Nilsson H. Rhythmic contractions of isolated small arteries from rat: influence of the endothelium. Acta Physiol Scand. 1993;148:153–63.

    Article  CAS  PubMed  Google Scholar 

  55. Hayashida N, Okui K, Fukuda Y. Mechanism of spontaneous rhythmic contraction in isolated rat large artery. Jpn J Physiol. 1986;36:783–94.

    Article  CAS  PubMed  Google Scholar 

  56. Matchkov VV, Rahman A, Peng H, Nilsson H, Aalkjaer C. Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries. Br J Pharmacol. 2004;142:961–72.

    Google Scholar 

  57. Mulvany MJ, Nilsson H, Flatman JA. Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol. 1982;332:363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rahman A, Hughes A, Matchkov V, Nilsson H, Aalkjaer C. Antiphase oscillations of endothelium and smooth muscle [Ca2+] in vasomotion of rat mesenteric small arteries. Cell Calcium. 2007;42:536–47.

    Google Scholar 

  59. Rahman A, Matchkov V, Nilsson H, Aalkjaer C. Effects of cGMP on coordination of vascular smooth muscle cells of rat mesenteric small arteries. J Vasc Res. 2005;42:301–11.

    Article  CAS  PubMed  Google Scholar 

  60. Segal SS, Beny JL. Intracellular recording and dye transfer in arterioles during blood flow control. Am J Phys. 1992;263:H1–7.

    CAS  Google Scholar 

  61. Von Der Weid PY, Beny JL. Simultaneous oscillations in the membrane potential of pig coronary artery endothelial and smooth muscle cells. J Physiol. 1993;471:13–24.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H. Hypothesis for the initiation of vasomotion. Circ Res. 2001;88:810–5.

    Article  CAS  PubMed  Google Scholar 

  63. Schuster A, Oishi H, Beny JL, Stergiopulos N, Meister JJ. Simultaneous arterial calcium dynamics and diameter measurements: application to myoendothelial communication. Am J Physiol Heart Circ Physiol. 2001;280:H1088–96.

    Article  CAS  PubMed  Google Scholar 

  64. Gustafsson H, Nilsson H. Rhythmic contractions of isolated small arteries from rat: role of calcium. Acta Physiol Scand. 1993;149:283–91.

    Article  CAS  PubMed  Google Scholar 

  65. Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007;293:H215–28.

    Article  CAS  PubMed  Google Scholar 

  66. Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH. A model of smooth muscle cell synchronization in the arterial wall. Am J Physiol Heart Circ Physiol. 2007;293:H229–37.

    Article  CAS  PubMed  Google Scholar 

  67. Akata T, Kodama K, Takahashi S. Role of endothelium in oscillatory contractile responses to various receptor agonists in isolated small mesenteric and epicardial coronary arteries. Jpn J Pharmacol. 1995;68:331–43.

    Article  CAS  PubMed  Google Scholar 

  68. Boedtkjer DM, Matchkov VV, Boedtkjer E, Nilsson H, Aalkjaer C. Vasomotion has chloride-dependency in rat mesenteric small arteries. Pflugers Arch. 2008;457:389–404.

    Article  PubMed  CAS  Google Scholar 

  69. Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, Hill CE. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol. 2006;291:H2047–56.

    Article  CAS  PubMed  Google Scholar 

  70. Huang Y, Cheung KK. Endothelium-dependent rhythmic contractions induced by cyclopiazonic acid in rat mesenteric artery. Eur J Pharmacol. 1997;332:167–72.

    Article  CAS  PubMed  Google Scholar 

  71. Jackson WF. Arteriolar vasomotion: a role for NO in the microcirculation? Resistance arteries, structure and function. In: Proceedings of the Third International Symposium on Resistance Arteries; 21–25 May 1991; Rebild, Skorping, Denmark. 1991. p. 199–203.

    Google Scholar 

  72. Jackson WF. Role of endothelium-derived nitric oxide in vasomotion. In: Rubanyi GM, editor. Mechanoreception by the Vascular Wall: Futura Publishing Company; 1993. p. 173–95.

    Google Scholar 

  73. Mauban JR, Wier WG. Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2004;287:H608–16.

    Article  CAS  PubMed  Google Scholar 

  74. Okazaki K, Seki S, Kanaya N, Hattori J, Tohse N, Namiki A. Role of endothelium-derived hyperpolarizing factor in phenylephrine-induced oscillatory vasomotion in rat small mesenteric artery. Anesthesiology. 2003;98:1164–71.

    Article  CAS  PubMed  Google Scholar 

  75. Freeman KA, Mao A, Nordberg LO, Pak J, Tallarida RJ. The relationship between vessel wall tension and the magnitude and frequency of oscillation in rat aorta. Life Sci. 1995;56:Pl129–34.

    CAS  PubMed  Google Scholar 

  76. Omote M, Mizusawa H. The role of sarcoplasmic reticulum in endothelium-dependent and endothelium-independent rhythmic contractions in the rabbit mesenteric artery. Acta Physiol Scand. 1993;149:15–21.

    Article  CAS  PubMed  Google Scholar 

  77. Sell M, Boldt W, Markwardt F. Desynchronising effect of the endothelium on intracellular Ca2+ concentration dynamics in vascular smooth muscle cells of rat mesenteric arteries. Cell Calcium. 2002;32:105–20.

    Google Scholar 

  78. Seppey D, Sauser R, Koenigsberger M, Beny JL, Meister JJ. Does the endothelium abolish or promote arterial vasomotion in rat mesenteric arteries? Explanations for the seemingly contradictory effects. J Vasc Res. 2008;45:416–26.

    Article  PubMed  Google Scholar 

  79. Seppey D, Sauser R, Koenigsberger M, Beny JL, Meister JJ. Intercellular calcium waves are associated with the propagation of vasomotion along arterial strips. Am J Physiol Heart Circ Physiol. 2010;298:H488–96.

    Article  CAS  PubMed  Google Scholar 

  80. Dirnagl U, Lindauer U, Villringer A. Nitric oxide synthase blockade enhances vasomotion in the cerebral microcirculation of anesthetized rats. Microvasc Res. 1993;45:318–23.

    Article  CAS  PubMed  Google Scholar 

  81. Lacza Z, Herman P, Gorlach C, Hortobagyi T, Sandor P, Wahl M, Benyo Z. NO synthase blockade induces chaotic cerebral vasomotion via activation of thromboxane receptors. Stroke. 2001;32:2609–14.

    Article  CAS  PubMed  Google Scholar 

  82. Matchkov VV, Aalkjaer C, Nilsson H. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries. J Gen Physiol. 2004;123:121–34.

    Google Scholar 

  83. Matchkov VV, Aalkjaer C, Nilsson H. Distribution of cGMP-dependent and cGMP-independent Ca2+ -activated CI conductances in smooth muscle cells from different vascular beds and colon. Pflugers Arch. 2005;451:371–9.

    Google Scholar 

  84. Broegger T, Jacobsen JC, Secher Dam V, Boedtkjer DM, Kold-Petersen H, Pedersen FS, Aalkjaer C, Matchkov VV. Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries. Cardiovasc Res. 2011;91:685–93.

    Article  CAS  PubMed  Google Scholar 

  85. Dam VS, Boedtkjer DM, Nyvad J, Aalkjaer C, Matchkov V. TMEM16A knockdown abrogates two different Ca2+ -activated CI currents and contractility of smooth muscle in rat mesenteric small arteries. Pflugers Arch. 2014a;466:1391–409.

    Google Scholar 

  86. Dam VS, Boedtkjer DM, Aalkjaer C, Matchkov V. The bestrophin- and TMEM16A-associated Ca2+ − activated CI channels in vascular smooth muscles. Channels (Austin). 2014b;8:361–9.

    Google Scholar 

  87. Oh U, Jung J. Cellular functions of TMEM16/anoctamin. Pflugers Arch. 2016;468:443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matchkov VV, Larsen P, Bouzinova EV, Rojek A, Boedtkjer DM, Golubinskaya V, Pedersen FS, Aalkjaer C, Nilsson H. Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells. Circ Res. 2008;103:864–72.

    Article  CAS  PubMed  Google Scholar 

  89. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998;392:933.

    Article  CAS  PubMed  Google Scholar 

  90. Li W-H, Llopis J, Whitney M, Zlokarnik G, Tsien RY. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature. 1998;392:936.

    Google Scholar 

  91. Zhu L, Luo Y, Chen T, Chen F, Wang T, Hu Q. Ca2+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. J Cell Sci. 2008;121:2511–8.

    Article  CAS  PubMed  Google Scholar 

  92. Sward K, Dreja K, Lindqvist A, Persson E, Hellstrand P. Influence of mitochondrial inhibition on global and local [Ca2+]i in rat tail artery. Circ Res. 2002;90:792–9.

    Article  PubMed  Google Scholar 

  93. Smedler E, Uhlen P. Frequency decoding of calcium oscillations. Biochim Biophys Acta. 2014;1840:964–9.

    Article  CAS  PubMed  Google Scholar 

  94. Li L, Stefan MI, Le Novere N. Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. PLoS One. 2012;7:e43810.

    Google Scholar 

  95. Collins TJ, Lipp P, Berridge MJ, Bootman MD. Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J Biol Chem. 2001;276:26411–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Aalkjaer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aalkjaer, C., Mulvany, M.J. (2020). Structure and Function of the Microcirculation. In: Agabiti-Rosei, E., Heagerty, A.M., Rizzoni, D. (eds) Microcirculation in Cardiovascular Diseases. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-47801-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47801-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47800-1

  • Online ISBN: 978-3-030-47801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics