Skip to main content

The Effect of Chemotherapy on the Ovary Clinical and Pathophysiological Review

  • Chapter
  • First Online:
Female and Male Fertility Preservation
  • 1351 Accesses

Abstract

Advances in oncological therapy have resulted in an increasing population of young cancer survivors who must contend with the harmful side effects of chemotherapy on subsequent fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Cancer Society Inc. Surveillance Research; 2020.

    Google Scholar 

  2. Anderson RA, Remedios R, Kirkwood AA, Patrick P, Stevens L, Clifton-Hadley L, et al. Determinants of ovarian function after response-adapted therapy in patients with advanced Hodgkin's lymphoma (RATHL): a secondary analysis of a randomised phase 3 trial. Lancet Oncol. 2018;19:1328–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wallace WHB, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6:209–18.

    PubMed  Google Scholar 

  4. Schover LR. Rates of postcancer parenthood. J Clin Oncol. 2009;27:321–2.

    PubMed  Google Scholar 

  5. Meirow D, Biederman H, Anderson RA, Wallace WHB. Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol. 2010;53(4):727–39.

    PubMed  Google Scholar 

  6. Miller JJ 3rd, Williams GF, Leissring JC. Multiple late complications of therapy with cyclophosphamide, including ovarian destruction. Am J Med. 1971;50:530–5.

    PubMed  Google Scholar 

  7. Fries JF, Sharp GC, McDevitt HO, Holman HR. Cyclophosphamide therapy in systemic lupus erythematosus and polymyositis. Arthritis Rheum. 1973;16:154–62.

    CAS  PubMed  Google Scholar 

  8. Koyama H, Wada T, Nishizawa Y, Iwanaga T, Aoki Y. Cyclophosphamide-induced ovarian failure and its therapeutic significance in patients with breast cancer. Cancer. 1977;39:1403–9.

    CAS  PubMed  Google Scholar 

  9. Jang H, Na Y, Hong K, Lee S, Moon S, Cho M, Park M, Lee OH, Chang EM, Lee DR, et al. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27(Kip1) promoter in primordial follicles. J Pineal Res. 2017;63:e12432.

    Google Scholar 

  10. Tuppi M, Kehrloesser S, Coutandin DW, Rossi V, Luh LM, Strubel A, Hotte K, Hoffmeister M, Schafer B, De Oliveira T, et al. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat Struct Mol Biol. 2018;25:261–9.

    CAS  PubMed  Google Scholar 

  11. Fabbri F, Carloni S, Brigliadori G, Zoli W, Lapalombella R, Marini M. Sequential events of apoptosis involving docetaxel, a microtubuleinterfering agent: a cytometric study. BMC Cell Biol. 2006;7:6.

    PubMed  PubMed Central  Google Scholar 

  12. Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, et al. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019;25:673–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Roness H, Kashi O, Meirow D, et al. Prevention of chemotherapy-induced ovarian damage. Fertil Steril. 2016;105(1):20–9.

    CAS  PubMed  Google Scholar 

  14. W Hamish B Wallace, Thomas W Kelsey. Human ovarian reserve from conception to the menopause. PLoS One 2010;5(1):e8772.

    Google Scholar 

  15. Anderson RA, Anckaert E, Bosch E, Dewailly D, Dunlop CE, Fehr D, Nardo L, Smitz J, Tremellen K, Denk B, Geistanger A, Hund M. Prospective study into the value of the automated Elecsys antimüllerian hormone assay for the assessment of the ovarian growing follicle pool. Fertil Steril. 2015;103(4):1074–1080.

    Google Scholar 

  16. von Wolff M, Roumet M, Stute P, Liebenthron J. Serum anti-Mullerian hormone (AMH) concentration has limited prognostic value for density of primordial and primary follicles, questioning it as an accurate parameter for the ovarian reserve.

    Google Scholar 

  17. Behringer K, Mueller H, Goergen H, Thielen I, Eibl AD, Stumpf V, Wessels C, Wiehlpütz M, Rosenbrock J, Halbsguth T, Reiners KS, Schober T, Renno JH, von Wolff M, van der Ven K, Kuehr M, Fuchs M, Diehl V, Engert A, Borchmann P. Gonadal function and fertility in survivors after Hodgkin lymphoma treatment within the German Hodgkin Study Group HD13 to HD15 trials. J Clin Oncol. 2013;31(2):231–9.

    CAS  PubMed  Google Scholar 

  18. Decanter C, Morschhauser F, Pigny P, Lefebvre C, Gallo C, Dewailly D. Anti-Müllerian hormone follow-up in young women treated by chemotherapy for lymphoma: preliminary results. Reprod Biomed Online. 2010;20(2):280–5.

    CAS  PubMed  Google Scholar 

  19. Meissner J, Tichy D, Katzke V, Kühn T, Dietrich S, Schmitt T, Ziepert M, Kuhnt E, Rixecker T, Zorn M, Witzens-Harig M, Pfreundschuh M, Ho AD. Long-term ovarian function in women treated with CHOP or CHOP plus etoposide for aggressive lymphoma. Ann Oncol. 2015;26(8):1771–6.

    CAS  PubMed  Google Scholar 

  20. Meirow D, Assad G, Dor J, Rabinovici J. The GnRH antagonist cetrorelix reduces cyclophosphamide-induced ovarian follicular destruction in mice. Hum Reprod. 2004;19:1294–9.

    CAS  PubMed  Google Scholar 

  21. Partridge AH, Ruddy KJ, Gelber S, Schapira L, Abusief M, Meyer M, Ginsburg E. Ovarian reserve in women who remain premenopausal after chemotherapy for early stage breast cancer. Fertil Steril. 2010;94(2):638–44.

    PubMed  Google Scholar 

  22. Petrek JA, Naughton MJ, Case D, et al. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. J Clin Oncol. 2006;24:1045–51.

    PubMed  Google Scholar 

  23. Brusamolino E, Baio A, Orlandi E, Arcaini L, Passamonti F, Griva V, Casagrande W, Pascutto C, Franchini P, Lazzarino M. Long-term events in adult patients with clinical stage IA-IIA nonbulky Hodgkin’s lymphoma treated with four cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine and adjuvant radiotherapy: a single-institution 15-year follow-up. Clin Cancer Res. 2006;12:6487–93.

    CAS  PubMed  Google Scholar 

  24. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7(6):535–43.

    CAS  PubMed  Google Scholar 

  25. Hahn KM, Johnson PH, Gordon N, Kuerer H, Middleton L, Ramirez M, Yang W, Perkins G, Hortobagyi GN, Theriault RL. Treatment of pregnant breast cancer patients and outcomes of children exposed to chemotherapy in utero. Cancer. 2006;107:1219–26.

    PubMed  Google Scholar 

  26. Overbeek A, van den Berg MH, van Leeuwen FE, Kaspers GJ, Lambalk CB, van Dulmen-den Broeder E. Chemotherapy-related late adverse effects on ovarian function in female survivors of childhood and young adult cancer: a systematic review. Cancer Treat Rev. 2017;53:10–24.

    CAS  PubMed  Google Scholar 

  27. Chemaitilly W, Li Z, Krasin MJ, Brooke RJ, Wilson CL, Green DM, Klosky JL, Barnes N, Clark KL, Farr JB, Fernandez-Pineda I, Bishop MW, Metzger M, Pui CH, Kaste SC, Ness KK, Srivastava DK, Robison LL, Hudson MM, Yasui Y, Sklar CA. Premature Ovarian Insufficiency in Childhood Cancer Survivors: A Report From the St. Jude Lifetime Cohort. J Clin Endocrinol Metab. 2017;102(7):2242–50.

    PubMed  PubMed Central  Google Scholar 

  28. Meirow D, Lewis H, Nugent D, et al. Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum Reprod. 1999;14:1903–7.

    CAS  PubMed  Google Scholar 

  29. Piasecka-Srader J, Blanco FF, Delman DH, Dixon DA, Geiser JL, Ciereszko RE, Petroff BK. Tamoxifen prevents apoptosis and follicle loss from cyclophosphamide in cultured rat ovaries. Biol Reprod. 2015;92:132.

    PubMed  PubMed Central  Google Scholar 

  30. Meng Y, Xu Z, Wu F, Chen W, Xie S, Liu J, Huang X, Zhou Y. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. Fertil Steril. 2014;102:871–7. e873

    CAS  PubMed  Google Scholar 

  31. Barekati Z, Gourabi H, Valojerdi MR, Yazdi PE. Previous maternal chemotherapy by cyclophosphamide (cp) causes numerical chromosome abnormalities in preimplantation mouse embryos. Reprod Toxicol. 2008;26:278–81.

    CAS  PubMed  Google Scholar 

  32. Meirow D, Epstein M, Lewis H, Nugent D, Gosden RG. Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations. Hum Reprod. 2001;16:632–7.

    CAS  PubMed  Google Scholar 

  33. Di Emidio G, D’Aurora M, Placidi M, Franchi S, Rossi G, Stuppia L, Artini PG, Tatone C, Gatta V. Pre-conceptional maternal exposure to cyclophosphamide results in modifications of DNA methylation in F1 and F2 mouse oocytes: evidence for transgenerational effects. Epigenetics. 2019;

    Google Scholar 

  34. Nguyen QN, Zerafa N, Liew SH, Findlay JK, Hickey M, Hutt KJ. Cisplatin- and cyclophosphamide-induced primordial follicle depletion is caused by direct damage to oocytes. Mol Hum Reprod. 2019;25:433–44.

    CAS  PubMed  Google Scholar 

  35. Luan Y, Edmonds ME, Woodruff TK, Kim SY. Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide. J Endocrinol. 2019;240:243–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S et al. Cyclophosphamide triggers follicle activation and "burnout"; AS101 prevents follicle loss and preserves fertility. Sci Transl Med 2013;5:185ra62.

    Google Scholar 

  37. Goldman KN, Chenette D, Arju R, Duncan FE, Keefe DL, Grifo JA, Schneider RJ. mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy. Proc Natl Acad Sci U S A. 2017;114:3186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Saleh HS, Omar E, Froemming GR, Said RM. Tocotrienol preserves ovarian function in cyclophosphamide therapy. Hum Exp Toxicol. 2015;34:946–52.

    CAS  PubMed  Google Scholar 

  39. Luo Q, Yin N, Zhang L, Yuan W, Zhao W, Luan X, Zhang H. Role of SDF-1/CXCR4 and cytokines in the development of ovary injury in chemotherapy drug induced premature ovarian failure mice. Life Sci. 2017;179:103–9.

    CAS  PubMed  Google Scholar 

  40. Pascuali N, Scotti L, Di Pietro M, Oubina G, Bas D, May M, et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33:844–59.

    CAS  PubMed  Google Scholar 

  41. Chow EJ, Stratton KL, Leisenring WM, Oeffinger KC, Sklar CA, Donaldson SS, Ginsberg JP, Kenney LB, Levine JM, Robison LL. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report fromthe childhood cancer survivor study cohort. Lancet Oncol. 2016;17:567–76.

    PubMed  PubMed Central  Google Scholar 

  42. Sanders JE, Hawley J, Levy W, et al. Pregnancies following high–dose cyclophosphamide with or without high–dose busulfan or total–body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.

    CAS  PubMed  Google Scholar 

  43. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weiss RB, Christian MC. New cisplatin analogues in development. A review Drugs. 1993;46:360–77.

    CAS  PubMed  Google Scholar 

  45. Robert C A M van Waardenburg 1, Laurina A de Jong, Maria A J van Eijndhoven, Caroline Verseyden, Dick Pluim, Lars E T Jansen, Mary-Ann Bjornsti, Jan H M Schellens. Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. J Biol Chem. 2004;279(52):54502–9.

    Google Scholar 

  46. Kalil NG, McGuire WP. Chemotherapy for advanced epithelial ovarian carcinoma. Best Pract Res Clin Obstet Gynaecol. 2002;16:553–71.

    PubMed  Google Scholar 

  47. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.

    CAS  PubMed  Google Scholar 

  48. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4:307–20.

    CAS  PubMed  Google Scholar 

  49. Bildik G, Akin N, Senbabaoglu F, Sahin GN, Karahuseyinoglu S, Ince U, et al. GnRH agonist leuprolide acetate does not confer any protection against ovarian damage induced by chemotherapy and radiation in vitro. Hum Reprod. 2015;30:2912–25.

    CAS  PubMed  Google Scholar 

  50. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, Beck LN, Brennan LV, Oktay K, American Society of Clinical Oncology. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 2006;24(18):2917–2931. Epub 2006 May 1.

    Google Scholar 

  51. Yuksel A, Bildik G, Senbabaoglu F, Akin N, Arvas M, Unal F, Kilic Y, Karanfil I, Eryilmaz B, Yilmaz P, et al. The magnitude Protecting the ovary against chemotherapy of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod. 2015;30:2926–35.

    CAS  PubMed  Google Scholar 

  52. Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C, et al. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15:1179–85.

    CAS  PubMed  Google Scholar 

  53. Morgan S, Lopes F, Gourley C, Anderson RA, Spears N. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin. PLoS One. 2013;8:e70117.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim SY, Cordeiro MH, Serna VA, Ebbert K, Butler LM, Sinha S, Mills AA, Woodruff TK, Kurita T. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network. Cell Death Differ. 2013;20:987–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rossi V, Lispi M, Longobardi S, Mattei M, Rella FD, Salustri A, De Felici M, Klinger FG. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse. Cell Death Differ. 2017;24:72–82.

    CAS  PubMed  Google Scholar 

  56. Li F, Turan V, Lierman S, Cuvelier C, De Sutter P, Oktay K. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29:107–13.

    CAS  PubMed  Google Scholar 

  57. Yeh J, Kim BS, Peresie J. Protection against cisplatin-induced ovarian damage by the antioxidant sodium 2-mercaptoethanesulfonate (mesna) in female rats. Am J Obstet Gynecol 2008;198:463.e461–463.e467.

    Google Scholar 

  58. Ozcan P, Ficicioglu C, Yildirim OK, Ozkan F, Akkaya H, Aslan I. Protective effect of resveratrol against oxidative damage to ovarian reserve in female Sprague–Dawley rats. Reprod Biomed Online. 2015;31:404–10.

    CAS  PubMed  Google Scholar 

  59. Go R, Adjei A. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999;17:409–22.

    CAS  PubMed  Google Scholar 

  60. Micetich KC, Barnes D, Erickson LC, Micetich KCA. Comparative study of the cytotoxicity and DNA-damaging effects of c/s- (diammino)(1,1 -cyclobutanedicarboxylato)-platinum(ll) and cis-diamminedichloroplatinum(Il) on L1210 cells. Cancer Res. 1985;45:4043–7.

    CAS  PubMed  Google Scholar 

  61. Knox RJ, Friedlos F, Lydall DA, Roberts JJ. Mechanism of cytotoxicity of anticancer platinum drugs: Evidence that cis-diamminedichloroplatinum(ii) and cis-diammine-(l,lcyclobutanedicarboxylato)platinum(ii) differ only in the kinetics of their interaction with dna. Cancer Res 1986;46:1972–1979.

    Google Scholar 

  62. Clerico A, Cappelli C, Ragni G, Caroli S, De IMA, Sordi A, Petrucci F, Bocca B, Alimonti A. Evaluation of carboplatin pharmacokinetics in pediatric oncology by means of inductively coupled plasma mass spectrometry. Ann Ist Super Sanita. 2006;42:461–8.

    CAS  PubMed  Google Scholar 

  63. Veal GJ, Errington J, Tilby MJ, Pearson ADJ, Foot ABM, McDowell H, Ellershaw C, Pizer B, Nowell GM, Pearson DG, et al. Adaptive dosing and platinum-DNA adduct formation in children receiving high-dose carboplatin for the treatment of solid tumours. Br J Cancer. 2007;96:725–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lambertini M, Del ML, Pescio MC, Andersen CY, Azim HA, Peccatori FA, Costa M, Revelli A, Salvagno F, Gennari A et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med 2016;14:1.

    Google Scholar 

  65. Allen CM, Lopes F, Mitchell RT, Spears N. Comparative gonadotoxicity of the chemotherapy drugs cisplatin and carboplatin on prepubertal mouse gonads. Mol Hum Reprod. 2020.

    Google Scholar 

  66. Blum RH, Carter SK. Adriamycin. A new anticancer drug with significant clinical activity. Ann Intern Med. 1974;80:249–59.

    CAS  PubMed  Google Scholar 

  67. Roti Roti EC, Ringelstetter AK, Kropp J, Abbott DH, Salih SM. Bortezomib prevents acute doxorubicin ovarian insult and follicle demise, improving the fertility window and pup birth weight in mice. PLoS One. 2014;9:e108174.

    PubMed  PubMed Central  Google Scholar 

  68. Xiao S, Zhang J, Liu M, Iwahata H, Rogers HB, Woodruff TK. Doxorubicin has dose-dependent toxicity on mouse ovarian follicle development, hormone secretion, and oocyte maturation. Toxicol Sci. 2017;157:320–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol. 2006;41:389–405.

    CAS  PubMed  Google Scholar 

  70. Clementi ME, Giardina B, Di Stasio E, Mordente A, Misiti F. Doxorubicin-derived metabolites induce release of cytochrome C and inhibition of respiration on cardiac isolated mitochondria. Anticancer Res. 2003;23:2445–50.

    CAS  PubMed  Google Scholar 

  71. Kiyomiya K, Matsuo S, Kurebe M. Proteasome is a carrier to translocate doxorubicin from cytoplasm into nucleus. Life Sci. 1998;62:1853–60.

    CAS  PubMed  Google Scholar 

  72. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21:440–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D, Fisher ER, Lippman ME, Wickerham DL, Wolmark N. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst. 1998;90:1361–70.

    CAS  PubMed  Google Scholar 

  74. Zhang T, He WH, Feng LL, Huang HG. Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. Regul Toxicol Pharmacol. 2017;86:1–10.

    PubMed  Google Scholar 

  75. Soleimani R, Heytens E, Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 2011;6:e19475.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gligorov J, Lotz JP. Preclinical pharmacology of the taxanes: implications of the differences. Oncologist. 2004;9(Suppl 2):3–8.

    CAS  PubMed  Google Scholar 

  77. Subrata H, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res. 1997;57:229–33.

    Google Scholar 

  78. Han HS, Ro J, Lee KS, Nam BH, Seo JA, Lee DH, Lee H, Lee ES, Kang HS, Kim SW. Analysis of chemotherapy-induced amenorrhea rates by three different anthracycline and taxane containing regimens for early breast cancer. Breast Cancer Res Treat. 2009;115:335–42.

    CAS  PubMed  Google Scholar 

  79. Torino F, Barnabei A, De Vecchis L, Appetecchia M, Strigan L, Corsello SM. Recognizing menopause in women with amenorrhea induced by cytotoxic chemotherapy for endocrine-responsive early breast cancer. Endocr Relat Cancer. 2012;19:R21–33.

    CAS  PubMed  Google Scholar 

  80. Gucer F, Balkanli-Kaplan P, Doganay L, Yuce MA, Demiralay E, Sayin NC, Yarsim T. Effect of paclitaxel on primordial follicular reserve in mice. Fertil Steril. 2001;76:628–9.

    CAS  PubMed  Google Scholar 

  81. Minisini AM, Menis J, Valent F, Andreetta C, Alessi B, Pascoletti G, Piga A, Fasola G, Puglisi F. Determinants of recovery from amenorrhea in premenopausal breast cancer patients receiving adjuvant chemotherapy in the taxane era. Anti-Cancer Drugs. 2009;20:503–7.

    CAS  PubMed  Google Scholar 

  82. Zhou WB, Yin H, Liu XA, Zha XM, Chen L, Dai JC, Tao AD, Chen L, Ma JJ, Ling LJ, et al. Incidence of chemotherapy-induced amenorrhea associated with epirubicin, docetaxel and navelbine in younger breast cancer patients. BMC Cancer. 2010;10:281.

    PubMed  PubMed Central  Google Scholar 

  83. Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.

    CAS  PubMed  Google Scholar 

  84. van Mello NM, Mol F, Verhoeve HR, et al. Methotrexate or expectant management in women with an ectopic pregnancy or pregnancy of unknown location and low serum hCG concentrations? A randomized comparison. Hum Reprod Oxf Engl. 2013;28:60–7.

    Google Scholar 

  85. Christina E Boots, Micah J Hill, Eve C Feinberg, Ruth B Lathi, Susan A Fowler, Emily S Jungheim. Methotrexate does not affect ovarian reserve or subsequent assisted reproductive technology outcomes. J Assist Reprod Genet. 2016;33(5):647–56.

    Google Scholar 

  86. M Lambouras, SH Liew, K Horvay, HE Abud, JM Stringer, Karla J. Hutt. Examination of the ovotoxicity of 5-fluorouracil in mice. J Assist Reprod Genet 2018;35(6):1053–1060.

    Google Scholar 

  87. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.

    PubMed  Google Scholar 

  89. Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P; Intensive Care in Hematological and Oncological Patients (iCHOP) Collaborative Group. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017 Apr 14;21(1):89. doi: 10.1186/s13054-017-1678-1.

    Google Scholar 

  90. González-Rodríguez E, Rodríguez-Abreu D & Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist. 2016;21:804–16.

    Google Scholar 

  91. Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy – immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13:195–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cukier P, Santini FC, Scaranti M, Hoff AO. Endocrine side effects of cancer immunotherapy. Endocr Relat Cancer. 2017;24(12):T331-T347. Clin J Oncol Nurs. 2017;21(4 Suppl):42–51.

    Google Scholar 

  93. Winship AL, Griffiths M, Requesens CL, Sarma U, Phillips K-A, Hutt KJ. The PARP inhibitor, olaparib, depletes the ovarian reserve in mice: implications for fertility preservation. Hum Reprod. 2020;35(8):1864–74.

    CAS  PubMed  Google Scholar 

  94. Kentaro Nakamura, Seido Takae, Eriko Shiraishi, Kiemi Shinya, Arby Jane Igualada, and Nao Suzuki. Poly (ADP-ribose) polymerase inhibitor exposure reduces ovarian reserve followed by dysfunction in granulosa cells. Sci Rep. 2020; 10: 17058.

    Google Scholar 

  95. Perez GI, Knudson CM, Leykin L, Korsmeyer SJ, Tilly JL. Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nat Med. 1997;3:1228–32.

    CAS  PubMed  Google Scholar 

  96. Zhang Q, Xu M, Yao X, Li T, Wang Q, Lai D. Human amniotic epithelial cells inhibit granulosa cell apoptosis induced by chemotherapy and restore the fertility. Stem Cell Res Ther. 2015;6:152.

    PubMed  PubMed Central  Google Scholar 

  97. Guo J-Q, Gao X, Lin Z-J, Wu W-Z, Huang L-H, Dong H-Y et al. BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause. BMC cell biology 2013;14:18-.

    Google Scholar 

  98. Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Cancer Res. 2007;67:10159–62.

    CAS  PubMed  Google Scholar 

  99. Bildik G, Acılan C, Sahin GN, Karahuseyinoglu S, Oktem O. C-Abl is not actıvated in DNA damage-induced and Tap63-mediated oocyte apoptosıs in human ovary. Cell Death Dis. 2018;9:943.

    PubMed  PubMed Central  Google Scholar 

  100. Bellusci G, Mattiello L, Iannizzotto V, Ciccone S, Maiani E, Villani V, et al. Kinase-independent inhibition of cyclophosphamide-induced pathways protects the ovarian reserve and prolongs fertility. Cell Death Dis. 2019;10:726.

    PubMed  PubMed Central  Google Scholar 

  101. Kerr JB, Hutt KJ, Michalak EM, Cook M, Vandenberg CJ, Liew SH, et al. DNA Damage-Induced Primordial Follicle Oocyte Apoptosis and Loss of Fertility Require TAp63-Mediated Induction of Puma and Noxa. Mol Cell. 2012;

    Google Scholar 

  102. Chen XY, Xia HX, Guan HY, Li B, Zhang W. Follicle Loss and Apoptosis in Cyclophosphamide-Treated Mice: What's the Matter? Int J Mol Sci. 2016;17

    Google Scholar 

  103. Ataya KM, Valeriote FA, Ramahi-Ataya AJ. Effect of cyclophosphamide on the immature rat ovary. Cancer Res. 1989;49:1660–4.

    CAS  PubMed  Google Scholar 

  104. Ben-Aharon I, Bar-Joseph H, Tzarfaty G, Kuchinsky L, Rizel S, Stemmer SM, et al. Doxorubicin-induced ovarian toxicity. Reprod Biol Endocrinol. 2010;8:20.

    PubMed  PubMed Central  Google Scholar 

  105. Meirow D. Reproduction post-chemotherapy in young cancer patients. Mol Cell Endocrinol. 2000;169:123–31.

    CAS  PubMed  Google Scholar 

  106. Lopes F, Smith R, Anderson RA, Spears N. Docetaxel induces moderate ovarian toxicity in mice, primarily affecting granulosa cells of early growing follicles. Mol Hum Reprod. 2014;20:948–59.

    CAS  PubMed  Google Scholar 

  107. Chang EM, Lim E, Yoon S, Jeong K, Bae S, Lee DR, et al. Cisplatin Induces Overactivation of the Dormant Primordial Follicle through PTEN/AKT/FOXO3a Pathway which Leads to Loss of Ovarian Reserve in Mice. PLoS One. 2015;10:e0144245.

    PubMed  PubMed Central  Google Scholar 

  108. Kano M, Sosulski AE, Zhang L, Saatcioglu HD, Wang D, Nagykery N, et al. AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proc Natl Acad Sci U S A. 2017;114:E1688–E97.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhou L, Xie Y, Li S, Liang Y, Qiu Q, Lin H, et al. Rapamycin Prevents cyclophosphamide-induced Over-activation of Primordial Follicle pool through PI3K/Akt/mTOR Signaling Pathway in vivo. Journal of ovarian research. 2017;10:56.

    PubMed  PubMed Central  Google Scholar 

  110. Hancke K, Strauch O, Kissel C, Gobel H, Schafer W, Denschlag D. Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo. Fertil Steril. 2007;87:172–7.

    CAS  PubMed  Google Scholar 

  111. Sonigo C, Beau I, Grynberg M, Binart N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice. FASEB J 2018:fj201801089R.

    Google Scholar 

  112. Lande Y, Fisch B, Tsur A, Farhi J, Prag-Rosenberg R, Ben-Haroush A, et al. Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro. Reprod Biomed Online. 2017;34:104–14.

    CAS  PubMed  Google Scholar 

  113. Roness H, Spector I. Leichtmann-Bardoogo Y. Dereh-Haim S, Meirow D. Pharmacological administration of recombinant human AMH rescues ovarian reserve and preserves fertility in a mouse model of chemotherapy, without interfering with anti-tumoural effects. J Assist Reprod Genet: Savino AM; 2019.

    Google Scholar 

  114. Marcello MF, Nuciforo G, Romeo R, Di Dino G, Russo I, Russo A, et al. Structural and ultrastructural study of the ovary in childhood leukemia after successful treatment. Cancer. 1990;66:2099–104.

    CAS  PubMed  Google Scholar 

  115. Meirow D, Dor J, Kaufman B, Shrim A, Rabinovici J, Schiff E, et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 2007;22:1626–33.

    CAS  PubMed  Google Scholar 

  116. Richard A Anderson, H Irene Su The Clinical Value and Interpretation of Anti-Müllerian Hormone in Women With Cancer. Front Endocrinol (Lausanne). 2020 Oct 7;11:574263.

    Google Scholar 

  117. Gunnala V, Fields J, Irani M, D'Angelo D, Xu K, Schattman G, Rosenwaks Z. BRCA carriers have similar reproductive potential at baseline to noncarriers: comparisons in cancer and cancer-free cohorts undergoing fertility preservation. Fertil Steril. 2019;111(2):363–71.

    CAS  PubMed  Google Scholar 

  118. Shapira M, Raanani H, Feldman B, Srebnik N, Dereck-Haim S, Manela D, Brenghausen M, Geva-Lerner L, Friedman E, Levi-Lahad E, Goldberg D, Perri T, Eldar-Geva T, Meirow D. BRCA mutation carriers show normal ovarian response in in vitro fertilization cycles. Fertil Steril. 2015;104(5):1162–7.

    CAS  PubMed  Google Scholar 

  119. Zhang Y, Ji Y, Li J, Lei L, Wu S, Zuo W, Jia X, Wang Y, Mo M, Zhang N, Shen Z, Wu J, Shao Z, Liu G. Sequential versus simultaneous use of chemotherapy and gonadotropin-releasing hormone agonist (GnRHa) among estrogen receptor (ER)-positive premenopausal breast cancer patients: effects on ovarian function, disease-free survival, and overall survival. Breast Cancer Res Treat. 2018;168(3):679–86.

    CAS  PubMed  Google Scholar 

  120. Lambertini M, Moore HCF, Leonard RCF, Loibl S, Nagamatsu P, Bruzzone M, Boni L, Unger JM, Anderson RA, Mehta K, Minton S, Poggio F, Albain KS, Adamson DJA, Gerber B, Cripps A, Bertelli G, Seiler S, Ceppi M, Partridge AH, Del Mastro L. Gonadotropin-Releasing Hormone Agonists During Chemotherapy for Preservation of Ovarian Function and Fertility in Premenopausal Patients With Early Breast Cancer: A Systematic Review and Meta-Analysis of Individual Patient-Level Data. J Clin Oncol. 2018 Jul 1;36(19):1981–1990.

    Google Scholar 

  121. Leonard RCF, Adamson DJA, Bertelli G, Mansi J, Yellowlees A, Dunlop J, Thomas GA, Coleman RE. Anderson RA; Anglo Celtic Collaborative Oncology Group and National Cancer Research Institute Trialists. GnRH agonist for protection against ovarian toxicity during chemotherapy for early breast cancer: the Anglo Celtic Group OPTION trial. Ann Oncol. 2017;28(8):1811–6.

    CAS  PubMed  Google Scholar 

  122. Lambertini M, Horicks F, Del Mastro L, Partridge AH, Demeestere I. Ovarian protection with gonadotropin-releasing hormone agonists during chemotherapy in cancer patients: From biological evidence to clinical application. Cancer Treat Rev. 2019;72:65–77.

    CAS  PubMed  Google Scholar 

  123. Iwase M, Ando M, Aogi K, Aruga T, Inoue K, Shimomura A, Tokunaga E, Masuda N, Yamauchi H, Yamashita T, Iwata H. Long-term survival analysis of addition of carboplatin to neoadjuvant chemotherapy in HER2-negative breast cancer. Breast Cancer Res Treat. 2020;180(3):687–94.

    CAS  PubMed  Google Scholar 

  124. Brougham MF, Crofton PM, Johnson EJ, Evans N, Anderson RA, Wallace WH. Anti-Müllerian hormone is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective study. J Clin Endocrinol Metab. 2012;97(6):2059–67.

    CAS  PubMed  Google Scholar 

  125. Hodgson DC, Pintilie M, Gitterman L, Dewitt B, Buckley CA, Ahmed S, Smith K, Schwartz A, Tsang RW, Crump M, Wells W, Sun A, Gospodarowicz MK. Fertility among female hodgkin lymphoma survivors attempting pregnancy following ABVD chemotherapy. Hematol Oncol. 2007;25(1):11–5.

    PubMed  Google Scholar 

  126. Kulkarni SS, Sastry PS, Saikia TK, Parikh PM, Gopal R, Advani SH. Gonadal function following ABVD therapy for Hodgkin’s disease. Am J Clin Oncol. 1997;20:354–7.

    CAS  PubMed  Google Scholar 

  127. Behringer K, Breuer K, Reineke T, May M, Nogova L, Klimm B, Schmitz T, Wildt L, Diehl V, Engert A, German Hodgkin’s Lymphoma Study Group. Secondary amenorrhea after Hodgkin’s lymphoma is influenced by age at treatment, stage of disease, chemotherapy regimen, and the use of oral contraceptives during therapy: a report from the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2005;23:7555–64.

    PubMed  Google Scholar 

  128. Stephen Daw, Dirk Hasenclever, Maurizio Mascarin, Ana Fernández-Teijeiro, Walentyna Balwierz, Auke Beishuizen, Roberta Burnelli, Michaela Cepelova, Alexander Claviez, Karin Dieckmann, Judith Landman-Parker, Regine Kluge, Dieter Körholz, Christine Mauz-Körholz, William Hamish Wallace, and Thierry Leblanc, on behalf of the EuroNet Paediatric Hodgkin Lymphoma Group. Risk and Response Adapted Treatment Guidelines for Managing First Relapsed and Refractory Classical Hodgkin Lymphoma in Children and Young People. Recommendations from the EuroNet Pediatric Hodgkin Lymphoma Group Hemasphere. 2020 Feb; 4(1): e329.

    Google Scholar 

  129. Grigg AP, McLachlan R, Zaja J, et al. Reproductive status in long-term bone marrow transplant survivors receiving busulfan- cyclophosphamide (120 mg/kg). BoneMarrow Transplant. 2000;26:1089–95.

    CAS  Google Scholar 

  130. Thibaud E, Rodriguez-Macias K, Trivin C, Espérou H, Michon J, Brauner R. Bone Marrow Transplant. Ovarian function after bone marrow transplantation during childhood. Bone Marrow Transplant. 1998;21(3):287–90.

    CAS  PubMed  Google Scholar 

  131. Meirow D. Ovarian injury and modern options to persevere fertility In female cancer patients treated with high dose radio-chemotherapy for hemato-oncological neoplasias and other cancers. Leukemia Lymphoma. 1999;33:65–76.

    CAS  PubMed  Google Scholar 

  132. Teinturier C, Hartmann O. Valteau- Couanet D, et al. Ovarian function after autologous bone marrow transplantation in childhood: high-dose busulfan is a major cause of ovarian failure. Bone Marrow Transplant. 1998;22:989–94.

    CAS  PubMed  Google Scholar 

  133. Elis A, Tevet A, Yerushalmi R, Blickstein D, Bairy O, Dann EJ, Blumenfeld Z, Abraham A, Manor Y, Shpilberg O, Lishner M. Fertility status among women treated for aggressive non-Hodgkin’s lymphoma. Leuk Lymphoma. 2006;47:623–7.

    PubMed  Google Scholar 

  134. Carter A, Robison LL, Francisco L, Smith D, Grant M, Baker KS, Gurney JG, McGlave PB, Weisdorf DJ, Forman SJ, Bhatia S. Prevalence of conception and pregnancy outcomes after hematopoietic cell transplantation: report from the Bone Marrow Transplant Survivor Study. Bone Marrow Transpl. 2006;37:1023–9.

    CAS  Google Scholar 

  135. Schüring AN, Fehm T, Behringer K, Goeckenjan M, Wimberger P, Henes M, Henes J, Fey MF, von Wolff M. Practical recommendations for fertility preservation in women by the FertiPROTEKT network. Part I: Indications for fertility preservation. Arch Gynecol Obstet. 2018;297(1):241–55.

    PubMed  Google Scholar 

  136. Dann EJ, Epelbaum R, Avivi I, Ben Shahar M, Haim N, Rowe JM, Blumenfeld Z. Fertility and ovarian function are preserved in women treated with an intensified regimen of cyclophosphamide, adriamycin, vincristine and prednisone (Mega-CHOP) for non-Hodgkin lymphoma. Hum Reprod. 2005;20(8):2247–9.

    CAS  PubMed  Google Scholar 

  137. Tamamyan G, Kadia T, Ravandi F, Borthakur G, Cortes J, Jabbour E, Daver N, Ohanian M, Kantarjian H. Marina Konopleva. Frontline treatment of acute myeloid leukemia in adults Crit Rev Oncol Hematol. 2017;110:20–34.

    PubMed  Google Scholar 

  138. Molgaard-Hansen L, Skou AS, Juul A, Glosli H, Jahnukainen K, Jarfelt M, Jónmundsson GK, Malmros J, Nysom K. Hasle H; Nordic Society of Pediatric Hematology and Oncology. Pubertal development and fertility in survivors of childhood acute myeloid leukemia treated with chemotherapy only: a NOPHO-AML study. Pediatr Blood Cancer. 2013;60(12):1988–95.

    CAS  PubMed  Google Scholar 

  139. Denise Niewerth, Ursula Creutzig, Marc B Bierings, Gertjan J L Kaspers. A review on allogeneic stem cell transplantation for newly diagnosed pediatric acute myeloid leukemia. Blood 2010;116(13):2205–2214.

    Google Scholar 

  140. Kim SS, Donnez J, Barri P, Pellicer A, Patrizio P, Rosenwaks Z, Nagy P, Falcone T, Andersen C, Hovatta O, Wallace H, Meirow D, Gook D, Kim SH, Tzeng CR, Suzuki S, Ishizuka B, Dolmans MM. Practice Committee ISFP Recommendations for fertility preservation in patients with lymphoma, leukemia, and breast cancer. J Assist Reprod Genet. 2012;29:465–8.

    PubMed  PubMed Central  Google Scholar 

  141. Jadoul P, Donnez J. How does bone marrow transplantation affect ovarian function and fertility? Curr Opin Obstet Gynecol. 2012;24(3):164–71.

    PubMed  Google Scholar 

  142. Mulrooney DA, Hyun G, Ness KK, Bhakta N, Pui C-H, Ehrhardt MJ, Krull KR, Crom DB, Chemaitilly W, Srivastava DK, Relling MV, Jeha S, Green DM, Yasui Y, Robison LL, Hudson MM. The changing burden of long-term health outcomes in survivors of childhood acute lymphoblastic leukaemia: a retrospective analysis of the St Jude Lifetime Cohort Study. Lancet Haematol. 2019;6(6):e306–16.

    PubMed  PubMed Central  Google Scholar 

  143. G K Rivera, D Pinkel, J V Simone, M L Hancock, W M Crist. Treatment of acute lymphoblastic leukemia. 30 years' experience at St. Jude Children's Research Hospital. N Engl J Med. 1993;329(18):1289–95.

    Google Scholar 

  144. Longo D, Mullinghan CG, Hunger SP. Acute Lymphoblastic Leukemia in Children. New Engl J Med 2015;373(16):1541–1552.

    Google Scholar 

  145. Lopez A, Harada K, Chen HC, Bhutani MS, Weston B, Lee JH, Maru DM, Chin FW, Rogers JE, Thomas I, Amlashi FG, Blum-Murphy MA, Rice DC, Zhao M, Hofstetter WL, Nguyen Q, Ajani JA. Taxane-based or platinum-based combination chemotherapy given concurrently with radiation followed by surgery resulting in high cure rates in esophageal cancer patients. Pediatr Blood Cancer. 2013;60(12):1988–95. https://doi.org/10.1002/pbc.24715. Epub 2013 Aug 23

    Article  CAS  Google Scholar 

  146. Medicine (Baltimore). 2020 Feb;99(9):e19295.

    Google Scholar 

  147. Balachandar S, Dunkel IJ, Khakoo Y, Wolden S, Allen J, Sklar CA. Ovarian function in survivors of childhood medulloblastoma: Impact of reduced dose craniospinal irradiation and high dose chemotherapy with autologous stem cell rescue. Pediatr Blood Cancer. 2015;62(2):317–21.

    PubMed  Google Scholar 

  148. Littley MD, Shalet SM, Reid H, Beardwell CG, Sutton ML.Q. The effect of external pituitary irradiation on elevated serum prolactin levels in patients with pituitary macroadenomas. J Med 1991;81(296):985–998.

    Google Scholar 

  149. Crowne E, Gleeson H, Benghiat H, Sanghera P, Toogood A. Effect of cancer treatment on hypothalamic-pituitary function. Lancet Diabetes Endocrinol. 2015;3(7):568–76.

    CAS  PubMed  Google Scholar 

  150. Constine LS, Woolf PD, Cann D, Mick G, McCormick K, Raubertas RF. Rubin P.N Hypothalamic-pituitary dysfunction after radiation for brain tumors. Engl J Med. 1993;328(2):87–94.

    CAS  Google Scholar 

  151. Raciborska A, Bilska K, Filipp E, Drabko K, Rogowska E, Chaber R, Pogorzała M, Połczyńska K, Adrianowska N, Rodriguez-Galindo C, Maciejewski T. Ovarian function in female survivors after multimodal Ewing sarcoma therapy. Pediatr Blood Cancer. 2015;62:341–5.

    PubMed  Google Scholar 

  152. Longhi A, Pignotti E, Versari M, Asta S, Bacci G. Effect of oral contraceptive on ovarian function in young females undergoing neoadjuvant chemotherapy treatment for osteosarcoma. Oncol Rep. 2003;10:151–5.

    PubMed  Google Scholar 

  153. Sedlis A, Bundy BN, Rotman MZ, Lentz SS, Muderspach LI, Zaino RJ. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: A Gynecologic Oncology Group Study. Gynecol Oncol. 1999;73(2):177–83.

    CAS  PubMed  Google Scholar 

  154. Rotman M, Sedlis A, Piedmonte MR, Bundy B, Lentz SS, Muderspach LI, Zaino RJ. A phase III randomized trial of postoperative pelvic irradiation in Stage IB cervical carcinoma with poor prognostic features: follow-up of a gynecologic oncology group study. Int J Radiat Oncol Biol Phys. 2006;65(1):169–76. Epub 2006 Jan 19

    PubMed  Google Scholar 

  155. Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri. Int J Gynaecol Obstet. 2018;143(Suppl 2):22–36.

    PubMed  Google Scholar 

  156. Morice P, Juncker L, Rey A, El-Hassan J, Haie-Meder C, Castaigne D. Ovarian transposition for patients with cervical carcinoma treated by radiosurgical combination. Fertil Steril. 2000;74:743–8.

    CAS  PubMed  Google Scholar 

  157. Ellen J. Hoekman, Dan Knoester, Alexander A W Peters, Frank W Jansen, Cornelis D de Kroon, Carina G J M Hilders. Ovarian survival after pelvic radiation: transposition until the age of 35 years. Arch Gynecol Obstet. 2018;298(5):1001–7.

    Google Scholar 

  158. Wan Tinn Teh, Catharyn Stern, Sarat Chander, Martha Hickey. The Impact of Uterine Radiation on Subsequent Fertility and Pregnancy Outcomes. Biomed Res Int. 2014; 2014: 482968.

    Google Scholar 

  159. Bleyer A, O’Leary M, Barr R. Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival: 1975–2000. National Cancer Institute: Bethesda (MD); 2006.

    Google Scholar 

  160. Todd SP, Driscoll MS. Prognosis for women diagnosed with melanoma during, before, or after pregnancy: Weighing the evidence. Int J Womens Dermatol. 2017;3(1):26–9.

    PubMed  PubMed Central  Google Scholar 

  161. Partridge AH, Gelber S, Peppercorn J, et al. Web-based survey of fertility issues in young women with breast cancer. J Clin Oncol. 2004;22(20):4174–83.

    Google Scholar 

  162. Walter JR, Xu S, Paller AS, Choi JN, Woodruff TK. Oncofertility considerations in adolescents and young adults given a diagnosis of melanoma: Fertility risk of Food and Drug Administration-approved systemic therapies. J Am Acad Dermatol. 2016;75(3):528–34.

    PubMed  PubMed Central  Google Scholar 

  163. Faje AT, Sullivan R, Lawrence D, et al. Ipilimumab-induced hypophysitis: A detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab. 2014;99(11):4078–85.

    CAS  PubMed  Google Scholar 

  164. Albarel F, Gaudy C. Carr_e T, et al. Long-term follow-up of ipilimumab-induced hypophysitis, a common adverse event of the anti-CTLA-4 antibody in melanoma. Eur J Endrocinol. 2015;172(2):195–204.

    CAS  Google Scholar 

  165. Ioannidis JP, Katsifis GE, Tzioufas AG, Moutsopoulos HM. Predictors of sustained amenorrhea from pulsed intravenous cyclophosphamide in premenopausal women with systemic lupus erythematosus. J Rheumatol. 2002;29:2129–35.

    CAS  PubMed  Google Scholar 

  166. Park MC, Park YB, Jung SY, Sbai A, Costedoat N, Wechsler B, Piette JC. Risk of ovarian failure and pregnancy outcome in patients with lupus nephritis treated with intravenous cyclophosphamide pulse therapy. Lupus. 2004;13:569–74.

    CAS  PubMed  Google Scholar 

  167. Ovarian Protection during Adjuvant Chemotherapy. New England Journal of Medicine. 2015;372(23):2268–2270.

    Google Scholar 

  168. Malgorzata E. Skaznik-Wikiel, Megan M. McGuire, Meena Sukhwani, Julia Donohue, Tianjiao Chu, Thomas C. Krivak, Aleksandar Rajkovic, Kyle E. Orwig, Granulocyte colony-stimulating factor with or without stem cell factor extends time to premature ovarian insufficiency in female mice treated with alkylating chemotherapy. Fertility and Sterility. 2013;99(7):2045–2054.e3.

    Google Scholar 

  169. Ali Akdemir, Burak Zeybek, Levent Akman, Ahment Mete Ergenoglu, Ahmet Ozgur Yeniel, Oytun Erbas, Altug Yavasoglu, Mustafa Cosan Terek, Dilek Taskiran, Granulocyte-colony stimulating factor decreases the extent of ovarian damage caused by cisplatin in an experimental rat model. Journal of Gynecologic Oncology. 2014;25(4):328.

    Google Scholar 

  170. Sana M. Salih, Retrovirus-mediated multidrug resistance gene (MDR1) overexpression inhibits chemotherapy-induced toxicity of granulosa cells. Fertility and Sterility. 2011;95(4):1390–1396.e6.

    Google Scholar 

Download references

Acknowledgments

On behalf of all the authors, our deepest gratitude to Howard Carp, MB, BS. FRCOG, for his assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Meirow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domniz, N., Meirow, D., Raanani, H., Roness, H. (2022). The Effect of Chemotherapy on the Ovary Clinical and Pathophysiological Review. In: Grynberg, M., Patrizio, P. (eds) Female and Male Fertility Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-47767-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47767-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47766-0

  • Online ISBN: 978-3-030-47767-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics