Skip to main content

Gas Sorption

  • Chapter
  • First Online:

Abstract

This chapter first reviews the basic theory underlying adsorption-based methods. It then highlights some key issues, beyond what is normally found in apparatus manuals, which arise when conducting experiments. The particular reasons for the choice of adsorbate to characterise a given adsorbent are then discussed. The types of data that can be obtained from various types of sorption experiments are then described, along with suggestions for several different data analysis methods to deliver a range of descriptors for porous solids. These include surface area, pore sizes, surface roughness, pore connectivity, pore length, and degree of spatial heterogeneity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Androutsopoulos GP, Salmas CE (2000) A new model for capillary condensation—evaporation hysteresis based on a random corrugated pore structure concept:  prediction of intrinsic pore size distributions. 1. Model Formulation. Ind Eng Chem Res 39(10):3747–3763

    Google Scholar 

  • Aukett PN, Jessop CA (1996) Assessment of connectivity in mixed meso/macroporous solids using nitrogen sorption. Fundamentals of adsorption. Kluwer Academic Publishers, MA, pp 59–66

    Chapter  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73(1):373–380

    Google Scholar 

  • Broekhoff JCP, De Boer JH (1967) Studies on pore systems in catalysis X: calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores. J Catal 9:15–27

    Article  CAS  Google Scholar 

  • Chuang IS, Maciel GE (1997) A detailed model of local structure and silanol hydrogen banding of silica gel surfaces. J Phys Chem 101:3052–3064

    Article  CAS  Google Scholar 

  • Cohan LH (1938) Sorption hysteresis and the vapor pressure of concave surfaces. J Am Chem Soc 60:433–435

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Davydov VY, Kiselev AV, Zhuralev LT (1964) Study of surface and bulk hydroxyl groups of silica by infra-red spectra and D2O exchange. Trans Farad Soc 60:2254–2264

    Article  CAS  Google Scholar 

  • Do D (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Book  Google Scholar 

  • Esparza JM, Ojeda ML, Campero A, Dominguez A, Kornhauser I, Rojas F, Vidales AM, Lopez RH, Zgrablich G (2004) N-2 sorption scanning behavior of SBA-15 porous substrates. Colloids Surf A 241:35–45

    Article  CAS  Google Scholar 

  • Gelb LD, Gubbins KE (1998) Characterization of porous glasses: simultion models, adsorption isotherms, and the brunauer-emmett-teller analysis method. Langmuir 14:2097–2111

    Article  CAS  Google Scholar 

  • Gelb LD, Gubbins KE (1999) Pore size distributions in porous glasses: a computer simulation study. Langmuir 15:305–308

    Article  CAS  Google Scholar 

  • Gor GY, Huber P, Bernstein N (2017) Adsorption-induced deformation of nanoporous materials—a review. Appl Phys Rev 4:011303

    Article  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption. Surface area and porosity. Academic Press Inc., London

    Google Scholar 

  • Halsey GD (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931–937

    Article  CAS  Google Scholar 

  • Harkins WD, Jura D (1944) Surfaces of solids. XII. An absolute method for the determination of the area of a finely divided crystalline solid. J Am Chem Soc 66:1362–1366

    Article  CAS  Google Scholar 

  • Hitchcock I, Malik S, Holt EM et al (2014) Impact of chemical heterogeneity on the accuracy of pore size distributions in disordered solids. J Phys Chem C 118(35):20627–20638

    Article  CAS  Google Scholar 

  • International Standards Organisation (ISO) (2010) BS ISO 9277:2010 Determination of the specific surface area of solids by gas adsorption—BET method. ISO, Switzerland

    Google Scholar 

  • Jagiello J, Jaroniec M (2018) 2D-NLDFT adsorption models for porous oxides with corrugated cylindrical pores. J Colloid Interface Sci 532:588–597

    Article  CAS  Google Scholar 

  • Karnaukhov AP (1985) Improvement of methods for surface area determinations. J Colloid Interface Sci 103(2):311–320

    Article  CAS  Google Scholar 

  • Kierlik E, Monson PA, Rosinberg ML, Tarjus G (2002) Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study. J Phys Conden Matter 14:9295–9315

    Article  CAS  Google Scholar 

  • Kleitz F, François Bérubé F, Guillet-Nicolas R, Yang C-M, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114(20):9344–9355

    Article  CAS  Google Scholar 

  • Kruk M, Jaroniec M, Sayari A (1999) New approach to evaluate pore size distributions and surface areas for hydrophobic mesoporous solids. J Phys Chem B 103:10670–10678

    Article  CAS  Google Scholar 

  • Landers J, Gor GY, Meimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A 437:3–32

    Article  CAS  Google Scholar 

  • Liu HL, Zhang L, Seaton NA (1993) Analysis of sorption hysteresis in mesoporous solids using a pore network model. J Colloid Interface Sci 156(2):285–293

    Article  CAS  Google Scholar 

  • Mahnke M, Mögel HJ (2003) Fractal analysis of physical adsorption on material surfaces. Colloids Surf A 216:215–228

    Article  CAS  Google Scholar 

  • Matadamas J, Alferez R, Lopez R, Roman G, Kornhauser I, Rojas F (2016) Advanced and delayed filling or emptying of pore entities by vapour sorption or liquid intrusion in simulated porous networks. Colloids Surf A 496:39–51

    Article  CAS  Google Scholar 

  • Matsuhashi H, Tanaka T, Arata K (2001) Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulfated metal oxides and H-type zeolites. J Phys Chem B 105(40):9669–9671

    Article  CAS  Google Scholar 

  • Murray KL, Seaton NA, Day MA (1999) An adsorption-based method for the characterization of pore networks containing both mesopores and macropores. Langmuir 15:6728–6737

    Article  CAS  Google Scholar 

  • Neimark AV, Ravikovitch PI (2001) Capillary condensation in mms and pore structure characterization. Micropor Mesopor Mater 44:697–707

    Article  Google Scholar 

  • Pfeifer P, Johnston GP, Deshpande R, Smith DM, Hurd AJ (1991) Structure analysis of porous solids from preadsorbed films. Langmuir 7(11):2833–2843

    Article  CAS  Google Scholar 

  • Ravikovitch PI, O’Domhnaill SC, Neimark AV, Schuth F, Unger KK (1995) Capillary hysteresis in nanopores: theoretical and experimental studies of nitrogen adsorption on MCM-41. Langmuir 11:4765–4772

    Article  CAS  Google Scholar 

  • Seaton NA (1991) Determination of the connectivity of porous solids from nitrogen sorption measurements. Chem Eng Sci 46(8):1895–1909

    Article  CAS  Google Scholar 

  • Thommes M, Katsumi K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  • Walker WC, Zettlemoyer AC (1948) A dual-surface BET adsorption theory. Y Phys Colloid Chem 52:47–58

    Article  CAS  Google Scholar 

  • Watt-Smith M, Edler KJ, Rigby SP (2005) An experimental study of gas adsorption on fractal surfaces. Langmuir 21(6):2281–2292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Patrick Rigby .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rigby, S.P. (2020). Gas Sorption. In: Structural Characterisation of Natural and Industrial Porous Materials: A Manual. Springer, Cham. https://doi.org/10.1007/978-3-030-47418-8_2

Download citation

Publish with us

Policies and ethics