Skip to main content

Insights into Nanotools for Dental Interventions

  • Chapter
  • First Online:
Nanopharmaceuticals: Principles and Applications Vol. 3

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 48))

Abstract

Orodental afflictions although not life-threatening have recently been found to be clinically associated with a large variety of life style related diseases, adding to the disease burden and leading to poor health outcomes. The disease ramifications might lead to poor quality of life and often go unnoticed till exhibits severe symptoms and evidence of disease associations. Despite being a locoregional affliction, they do not remain restricted to the mouth cavity; rather they have negative effects on distant organs too. Henceforth the disease requires a thorough understanding, and the treatment modalities are devised in a manner to cater mild to severe status of orodental afflictions. Successful treatment of orodental afflictions requires the customized therapeutic approaches which can be borrowed from the nanotechnology. The advancement in nanotechnology and its ramification into medicinal and allied fields has brought remarkable changes in the field of dentistry. Additionally, the forays into nanomaterial sciences, biotechnology, and maneuvering through dental nanorobotics have further added impetus to contemporary dental practices. Often the dental infections are progressive in nature and need an umbrella approach for treatment to deliver comprehensive oral hygiene and health. Nanotechnology tools with their aesthetic approach have recently emerged as a favored tool for both practitioners and patients. The treatment protocols could include controlled oral analgesia, dentin replacement therapy, as well as cure for dental hypersensitivity. Interesting development of mechanical dentifrobots for tooth repairing via covalently bonded diamondized enamel ensures robust orodontal environment. Succinctly put, nanotools have opened up avenues in the diagnosis, treatment, and prevention of dental diseases. The development of nanotools allows perfect therapeutic approach which has led to nearly seamless oral health, possibly due to the use of nanomaterials, tissue engineering, nanocomposites, and nanorobots. Nanotools have elicited great impact on restorative dentistry, pharmacotherapeutics, and diagnostic techniques and offers better ways toward maintaining perfect oral health. This chapter focuses on a review of various approaches of nanotechnology which has contributed to the advancements in dentistry. It also focuses on advent of other nanotools which will cater to a variety of dental ailments associated with bony as well as soft tissue defects. It is realized that the nanotechnology offers a perfect tool to treat a multitude of orodental infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitz I, Beyth N, Weinberg G, Borenstein A, Polak D, Kesler-Shvero D, Houri-Haddad Y (2012) In vitro biocompatibility of endodontic sealers incorporating antibacterial nanoparticles. J Nanomater 2012:12

    Google Scholar 

  • Addy M, Urquhart E (1992) dentin hypersensitivity: its prevalence, aetiology and clinical management. Dent Update 19:407–408

    CAS  Google Scholar 

  • Allaker R (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1186

    CAS  Google Scholar 

  • Anderegg CR, Alexander DC, Freidman M (1999) A bioactive glass particulate in the treatment of molar furcation invasions. J Periodontol 70:384–387

    CAS  Google Scholar 

  • Andersson A, Sköld-Larsson K, Haligren A, Petersson LG, Twetman S (2007) Effect of a dental cream containing amorphous calcium phosphate complexes on white spot lesion regression assessed by laser fluorescence. Oral Health Prev Dent 5(3):229–233

    Google Scholar 

  • Ang C, Veith PD, Dashper SG, Reynolds EC (2008) Application of 16O/18O reverse proteolytic labeling to determine the effect of biofilm culture on the cell envelope proteome of Porphyromonas gingivalis W50. Proteomics 8:1645–1660

    CAS  Google Scholar 

  • Bakó J, Szepesi M, Márton I, Borbély J, Hegedûs C (2007) Synthesis of nanoparticles for dental drug delivery systems. Fogorv Sz 100:109–113

    Google Scholar 

  • Bauer F, Ernst H, Decker U, Findeisen M, Gläsel H, Langguth H, Hartmann E, Mehnert R, Peuker C (2000) Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 1 FTIR and multi-nuclear NMR spectroscopy to the characterization of methacryl grafting. Macromol Chem Phys 201:2654–2659

    CAS  Google Scholar 

  • Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement. Adv Mater 11:1362–1365

    CAS  Google Scholar 

  • Berkovitz BKB, Holland GR, Moxham BJ (1978) A colour atlas & textbook of oral anatomy. Wolfe Medical Publications, London

    Google Scholar 

  • Bhardwaj SB, Mehta M, Gauba K (2009) Nanotechnology: role in dental biofilms. Indian J Dent Res 20:511

    Google Scholar 

  • Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    CAS  Google Scholar 

  • Bishara SE, Ajlouni R, Soliman MM, Oonsombats C, Laffoon JF, Warren J (2007) Evaluation of a new nano-filled restorative material for bonding orthodontic brackets. World J Orthod 8(1):8–12

    Google Scholar 

  • Black GV (1897) Descriptive anatomy of the human teeth. SS White Manufacturing Company, Philadelphia

    Google Scholar 

  • Bošnjak A, Plančak D, Curilović Z (2001) Advances in the relationship between periodontitis and systemic diseases. Acta Stomatol Croat 35:267–271

    Google Scholar 

  • Brunsvold MA, Mellonig JT (1993) Bone grafts and periodontal regeneration. Periodontol 2000(1):80–91

    Google Scholar 

  • Callaghan DJ, Vaziri A, Nayeb-Hashemi H (2006) Effect of fiber volume fraction and length on the wear characteristics of glass fiber-reinforced dental composites. Dent Mater 22:84–93

    CAS  Google Scholar 

  • Chang C-Y, Yamada S (2000) Evaluation of the regenerative effect of a 25% doxycycline-loaded biodegradable membrane for guided tissue regeneration. J Periodontol 71:1086–1093

    CAS  Google Scholar 

  • Chen FM, Shelton RM, Jin Y, & Chapple IL (2009). Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Medicinal Research Reviews, 29(3), 472–513

    Google Scholar 

  • Dye B (2017) The global burden of oral disease: research and public health significance. J Dent Res 96:361–363

    CAS  Google Scholar 

  • Ferracane JL (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6:302–318

    CAS  Google Scholar 

  • Fong H (2004) Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45:2427–2432

    CAS  Google Scholar 

  • Garoushi S, Vallittu PK, Lassila LV (2008) Depth of cure and surface microhardness of experimental short fiber-reinforced composite. Acta Odontol Scand 66:38–42

    CAS  Google Scholar 

  • Gates KA, Grad H, Birek P, Lee PI (1994) A new bioerodible polymer insert for the controlled release of metronidazole. Pharm Res 11:1605–1609

    CAS  Google Scholar 

  • Giannobile WV, Ryan S, Shih M-S, Su DL, Kaplan PL, Chan TC (1998) Recombinant human osteogenic protein-1 (OP-1) stimulates periodontal wound healing in class III furcation defects. J Periodontol 69:129–137

    CAS  Google Scholar 

  • Gibbins B (2003) The antimicrobial benefits of silver and the relevance of microlattice technology. Ostomy Wound Manage 4-7

    Google Scholar 

  • Gupta G, Mansi B (2012) Ozone therapy in periodontics. J Med Life 5:59

    CAS  Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309

    CAS  Google Scholar 

  • Hannig M, Hannig C (2010) Nanomaterials in preventive dentistry. Nat Nanotechnol 5:565

    CAS  Google Scholar 

  • Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978

    CAS  Google Scholar 

  • Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, de JP GA, Tapia-Pérez H, Castañón GM (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol Biol Med 4:237–240

    Google Scholar 

  • Hirasawa M, Hayashi K, Takada K (2000) Measurement of peptidase activity and evaluation of effectiveness of administration of minocycline for treatment of dogs with periodontitis. Am J Vet Res 61:1349–1352

    CAS  Google Scholar 

  • Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    CAS  Google Scholar 

  • Jain P, Mirza MA, & Iqbal Z (2019) A 4-D approach for amelioration of periodontitis. Medical hypotheses 133, 109392

    Google Scholar 

  • Jain P, Mirza MA, Talegaonkar S, Nandy S, Dudeja M, Sharma N, ... & Iqbal Z (2020) Design and in vitro/in vivo evaluations of a multiple-drug-containing gingiva disc for periodontotherapy. RSC Advances 10(14):8530–8538

    Google Scholar 

  • Jain N, Jain GK, Javed S, Iqbal Z, Talegaonkar S, Ahmad FJ, Khar RK (2008) Recent approaches for the treatment of periodontitis. Drug Discov Today 13:932–943

    CAS  Google Scholar 

  • Jha N, Ryu JJ, Wahab R, Al-Khedhairy AA, Choi EH, Kaushik NK (2017) Treatment of oral hyperpigmentation and gummy smile using lasers and role of plasma as a novel treatment technique in dentistry: an introductory review. Oncotarget 8:20496

    Google Scholar 

  • John KRS (2007) Biocompatibility of dental materials. Dent Clin N Am 51:747–760

    Google Scholar 

  • Jones JR (2015) Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater 23:S53–S82

    Google Scholar 

  • Kashi TSJ, Eskandarion S, Esfandyari-Manesh M, Marashi SMA, Samadi N, Fatemi SM, Atyabi F, Eshraghi S, Dinarvand R (2012) Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine 7:221

    Google Scholar 

  • Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 33:481–492

    CAS  Google Scholar 

  • Khanal D, Dillon E, Hau H, Fu D, Ramzan I, Chrzanowski W (2015) Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials. J Mater Sci Mater Med 26:272

    Google Scholar 

  • Khosla R (2009) Nanotechnology in dentistry. Famdent Pract Dent Handb 9:69–84

    Google Scholar 

  • Kim H, Kim H (2006) Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics. J Biomed Mater Res Part B Appl Biomater Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 77:323–328

    Google Scholar 

  • Klinge B, Kuvatanasuhati J, Attström R, Kalfas S, Edwardsson S (1992) The effect of topical metronidazole therapy on experimentally-induced periodontitis in the beagle dog. J Clin Periodontol 19:702–707

    CAS  Google Scholar 

  • Koch K, Brave D (2009) The increased use of bioceramics in endodontics. Dentaltown 10:33–43

    Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    CAS  Google Scholar 

  • Korkmaz Y, Ozel E, Attar N, Bicer CO (2010) Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin. Lasers Med Sci 25:861–866

    Google Scholar 

  • Kozlovsky A, Sintov A, Zubery Y, Tal H (1992) Inhibition of plaque formation and gingivitis in beagle dogs by topical use of a degradable controlled-release system containing chlorhexidine. J Dent Res 71:1577–1581

    CAS  Google Scholar 

  • Kumar SR, Vijayalakshmi R (2006) Nanotechnology in dentistry. Indian J Dent Res 17:62–65

    Google Scholar 

  • Lee Y, Lim B, Rhee S, Yang H, Powers JM (2004) Changes of optical properties of dental nano-filled resin composites after curing and thermocycling. J Biomed Mater Res Part B Appl Biomater Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 71:16–21

    Google Scholar 

  • Leitao R, Rocha F, Chaves H, Lima V, Cunha F, Ribeiro R, Brito G (2004) Locally applied isosorbide decreases bone resorption in experimental periodontitis in rats. J Periodontol 75:1227–1232

    CAS  Google Scholar 

  • Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    CAS  Google Scholar 

  • Liang Y, Li Y, Sun K, Zhang Q, Li W, Zhu W, Zhang J, Fang J (2015) CORRECTION: plasma thorns: atmospheric pressure non-thermal plasma source for dentistry applications. Plasma Process Polym 12:1186–1187

    CAS  Google Scholar 

  • Liu M-H, Chan C-H, Ling J-H, Wang CC (2007) Filling in dentinal tubules. Nanotechnology 18:475104

    Google Scholar 

  • Luan Q, Desta T, Chehab L, Sanders V, Plattner J, Graves D (2008) Inhibition of experimental periodontitis by a topical boron-based antimicrobial. J Dent Res 87:148–152

    CAS  Google Scholar 

  • Marega R, Karmani L, Flamant L, Nageswaran PG, Valembois V, Masereel B, Feron O, Vander Borght T, Lucas S, Michiels C (2012) Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. J Mater Chem 22:21305–21312

    CAS  Google Scholar 

  • Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos Part Appl Sci Manuf 40:1661–1672

    Google Scholar 

  • Miletić M, Mojsilović S, Đorđević IO, Maletić D, Puač N, Lazović S, Malović G, Milenković P, Petrović ZL, Bugarski D (2013) Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells. J Phys Appl Phys 46:345401

    Google Scholar 

  • Mitra SB, Wu D, Holmes BN (2003) An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134:1382–1390

    CAS  Google Scholar 

  • Moezizadeh M (2013) Future of dentistry, nanodentistry, ozone therapy and tissue engineering. J Dev Biol Tissue Eng 5:1–6

    CAS  Google Scholar 

  • Morris MS, Lee Y, Lavin MT, Giannini PJ, Schmid MJ, Marx DB, Reinhardt RA (2008) Injectable simvastatin in periodontal defects and alveolar ridges: pilot studies. J Periodontol 79:1465–1473

    CAS  Google Scholar 

  • Oonishi H, Hench L, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S (2000) Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 51:37–46

    CAS  Google Scholar 

  • Perdigao J (2007) New developments in dental adhesion. Dent Clin N Am 51:333–357

    Google Scholar 

  • Pinon-Segundo E, Ganem-Quintanar A, Alonso-Pérez V, Quintanar-Guerrero D (2005) Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int J Pharm 294:217–232

    CAS  Google Scholar 

  • Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8:4593–4596

    CAS  Google Scholar 

  • Pragati S, Ashok S, Kuldeep S (2009) Recent advances in periodontal drug delivery systems. Int J Drug Deliv 1:1–14

    CAS  Google Scholar 

  • Quirynen M, Bollen C (1995) The influence of surface roughness and surface-free energy on supra-and subgingival plaque formation in man: a review of the literature. J Clin Periodontol 22:1–14

    CAS  Google Scholar 

  • Raafat D, Sahl H (2009) Chitosan and its antimicrobial potential–a critical literature survey. Microb Biotechnol 2:186–201

    CAS  Google Scholar 

  • Rahiotis C, Vougiouklakis G, Eliades G (2008) Characterization of oral films formed in the presence of a CPP–ACP agent: an in situ study. J Dent 36:272–280

    CAS  Google Scholar 

  • Redlich M, Katz A, Rapoport L, Wagner H, Feldman Y, Tenne R (2008) Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS2 impregnated in electroless nickel–phosphorous film. Dent Mater 24:1640–1646

    CAS  Google Scholar 

  • Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859

    CAS  Google Scholar 

  • Reynolds E, Cai F, Shen P, Walker G (2003) Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. J Dent Res 82:206–211

    CAS  Google Scholar 

  • Ripamonti U, Crooks J, Petit J, Rueger DC (2001) Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus). Eur J Oral Sci 109:241–248

    CAS  Google Scholar 

  • Romanos G (2015) Current concepts in the use of lasers in periodontal and implant dentistry. J Indian Soc Periodontol 19:490

    Google Scholar 

  • Rybachuk AV, Chekman IS, Nebesna TY (2009) Nanotechnology and nanoparticles in dentistry. Pharmacol Pharm 1:e20

    Google Scholar 

  • Salerno M, Diaspro A (2015) Dentistry on the bridge to nanoscience and nanotechnology. Front Mater 2:19

    Google Scholar 

  • Sasalawad SS, Naik SN, Shashibhushan K, Poornima P, Roshan N (2014) Nanodentistry: the next big thing is small. Int J Contemp Dent Med Rev 2014:1–6

    Google Scholar 

  • Sato Y, Kikuchi M, Ohata N, Tamura M, Kuboki Y (2004) Enhanced cementum formation in experimentally induced cementum defects of the root surface with the application of recombinant basic fibroblast growth factor in collagen gel in vivo. J Periodontol 75:243–248

    CAS  Google Scholar 

  • Schallhorn RG (1977) Present status of osseous grafting procedures. J Periodontol 48:570–576

    CAS  Google Scholar 

  • Schleyer TL (2000) Nanodentistry: fact or fiction? J Am Dent Assoc 131:1567–1568

    CAS  Google Scholar 

  • Shankar BS, Ramadevi T, Neetha M, Reddy PSK, Saritha G, Reddy JM (2013) Chronic inflammatory gingival overgrowths: laser gingivectomy & gingivoplasty. J Int Oral Health 5:83

    Google Scholar 

  • Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK (2010) Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4:1921–1926

    CAS  Google Scholar 

  • Sheikh Z, Sima C, Glogauer M (2015) Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials 8:2953–2993

    CAS  Google Scholar 

  • Shrestha A, Fong S-W, Khoo B-C, Kishen A (2009) Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound. J Endod 35:1028–1033

    Google Scholar 

  • Slavkin HC (1999) Entering the era of molecular dentistry. J Am Dent Assoc 130:413–417

    CAS  Google Scholar 

  • Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101

    Google Scholar 

  • Suresh M, Sujatha V, Mahalaxmi S (2014) Nanotechnology–an asset to dentistry!!! Int J Comm Dent 5:27–31

    Google Scholar 

  • Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    CAS  Google Scholar 

  • Tay FR, Pashley DH (2008) Guided tissue remineralisation of partially demineralised human dentin. Biomaterials 29:1127–1137

    CAS  Google Scholar 

  • Terry DA (2004) Direct applications of a nanocomposite resin system: part 1–the evolution of contemporary composite materials. Pract Proced Aesthetic Dent 16:417–422

    Google Scholar 

  • Tian M, Gao Y, Liu Y, Liao Y, Xu R, Hedin NE, Fong H (2007) Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48:2720–2728

    CAS  Google Scholar 

  • Tian M, Gao Y, Liu Y, Liao Y, Hedin NE, Fong H (2008) Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent Mater 24:235–243

    CAS  Google Scholar 

  • Treuel L, Jiang X, Nienhaus GU (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface 10:20120939

    Google Scholar 

  • Türp JC, Alt KW (1998) Anatomy and morphology of human teeth. In: Dental anthropology. Springer, New York, pp 71–94

    Google Scholar 

  • Uysal T, Yagci A, Uysal B, Akdogan G (2009) Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding? Eur J Orthod 32:78–82

    Google Scholar 

  • Vanderkerckhove B, Quirynen M, Van Steenberghe D (1998) The use of locally-delivered minocycline in the treatment of chronic periodontitis. A review of the literature. J Clin Periodontol 25:964–968

    Google Scholar 

  • Venegas S, Palacios J, Apella M, Morando P, Blesa M (2006) Calcium modulates interactions between bacteria and hydroxyapatite. J Dent Res 85:1124–1128

    CAS  Google Scholar 

  • Verma SK, Prabhat K, Goyal L, Rani M, Jain A (2010) A critical review of the implication of nanotechnology in modern dental practice. Natl J Maxillofac Surg 1:41

    Google Scholar 

  • Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, Stark WJ (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3:936–943

    CAS  Google Scholar 

  • Wang Y-L, Lee B-S, Chang K-C, Chiu H-C, Lin F-H, Lin C-P (2007) Characterization, fluoride release and recharge properties of polymer–kaolinite nanocomposite resins. Compos Sci Technol 67:3409–3416

    CAS  Google Scholar 

  • Whitesides GM, Love JC (2001) The art of building small. Sci Am 285:38–47

    CAS  Google Scholar 

  • Wikesjö UM, Sorensen RG, Kinoshita A, Jian Li X, Wozney JM (2004) Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment: a pilot study. J Clin Periodontol 31:662–670

    Google Scholar 

  • Wong DT (2006) Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J Am Dent Assoc 137:313–321

    CAS  Google Scholar 

  • Xia Y, Zhang F, Xie H, Gu N (2008) Nanoparticle-reinforced resin-based dental composites. J Dent 36:450–455

    CAS  Google Scholar 

  • Xu H, Weir M, Sun L, Takagi S, Chow L (2007) Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J Dent Res 86:378–383

    CAS  Google Scholar 

  • Xu HH, Weir MD, Sun L (2009) Calcium and phosphate ion releasing composite: effect of pH on release and mechanical properties. Dent Mater 25:535–542

    CAS  Google Scholar 

  • Yaffe A, Herman A, Bahar H, Binderman I (2003) Combined local application of tetracycline and bisphosphonate reduces alveolar bone resorption in rats. J Periodontol 74:1038–1042

    CAS  Google Scholar 

  • Yamagishi K, Onuma K, Suzuki T, Okada F, Tagami J, Otsuki M, Senawangse P (2005) Materials chemistry: a synthetic enamel for rapid tooth repair. Nature 433:819

    CAS  Google Scholar 

  • Yang K, Zhang F-J, Tang H, Zhao C, Cao Y-A, Lv X-Q, Chen D, Li Y-D (2011) In-vivo imaging of oral squamous cell carcinoma by EGFR monoclonal antibody conjugated near-infrared quantum dots in mice. Int J Nanomedicine 6:1739

    CAS  Google Scholar 

  • Yuan Z, Peng B, Jiang H, Bian Z, Yan P (2010) Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod 36:1145–1148

    Google Scholar 

  • Zhou B, Liu Y, Wei W, Mao J (2008) GEPIs-HA hybrid: a novel biomaterial for tooth repair. Med Hypotheses 71:591–593

    CAS  Google Scholar 

Download references

Acknowledgments

Pooja Jain gratefully thanks the Jamia Hamdard for providing financial grant in the form of Jamia Hamdard – silver jubilee research fellowship – 2017, AS/Fellow/JH-5/2018.

Fahima Dilnawaz gratefully thanks the Department of Science and Technology, Govt. of India, for providing financial grant in the form of women scientist fellowship, SR/WOS-A/LS-524/2013(G). Fahima Dilnawaz is thankful to Dr. Sanjeeb Kumar Sahoo, for the encouragement and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, P., Dilnawaz, F., Iqbal, Z. (2020). Insights into Nanotools for Dental Interventions. In: Yata, V., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanopharmaceuticals: Principles and Applications Vol. 3. Environmental Chemistry for a Sustainable World, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-47120-0_3

Download citation

Publish with us

Policies and ethics