Skip to main content

Active Solar Technologies

  • Chapter
  • First Online:
Solar Buildings and Neighborhoods

Part of the book series: Green Energy and Technology ((GREEN))

  • 466 Accesses

Abstract

This chapter presents a summary of active solar technologies employed to convert solar radiation into thermal and electrical energy, to be utilized in various building applications including space heating, domestic hot water, and to meet various electrical requirements. Active solar technologies include various types of photovoltaic (PV) technologies (such as different PV cells, semi-transparent PV, transparent PV, and others), hybrid PV/thermal collectors, and solar thermal collectors. Current advancements in these technologies are summarized. In addition, the methods of integration of these technologies into buildings and especially the building envelope are discussed. The main criteria for successful integration and performance of these technologies are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh GK (2013) Solar power generation by PV (photovoltaic) technology: a review. Energy 53:1–13

    Article  Google Scholar 

  2. Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30(3):231–295

    Article  Google Scholar 

  3. Kim JT, Kim G (2010) Overview and new developments in optical daylighting systems for building a healthy indoor environment. Build Environ 45(2):256–269

    Article  Google Scholar 

  4. Mirkovich DN (1993) Assessment of beam lighting systems for interior core illumination in multi-story commercial buildings. ASHRAE Trans 99(1):1106–1016

    Google Scholar 

  5. Mayhoub MS, Carter DJ (2010) Towards hybrid lighting systems: a review. Light Res Technol 42(1):51–71

    Article  Google Scholar 

  6. Rehman S, Bader MA, Al-Moallem SA (2007). Cost of solar energy generated using PV panels. Renew Sustain Energy Rev 11:1843–1857,

    Article  Google Scholar 

  7. Poullikkas A (2010) Technology and market future prospects of photovoltaic systems. Int J Energy Environ (4)

    Google Scholar 

  8. Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sustain Energy Rev 15(3):1625–1636

    Article  Google Scholar 

  9. Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM (2011) Solar photovoltaic electricity: current status and future prospects. Sol Energy 85(8):1580–1608

    Article  Google Scholar 

  10. Pearsall N (ed) (2016) The performance of photovoltaic (PV) systems: modelling, measurement and assessment. Woodhead Publishing

    Google Scholar 

  11. Reijenga TH, Kaan HF (2011) PV in architecture. Handbook of photovoltaic science and engineering, 2nd ed. Wiley, Chichester, UK, pp 1043–1077

    Chapter  Google Scholar 

  12. Eder G, Peharz G, Trattnig R, Bonomo P, Saretta E, Frontini F, Polo López, CS, Wilson HR, Eisenlohr J, Chivelet NM, Karlsson S (2019) Coloured BIPV: market, research and development

    Google Scholar 

  13. Ramalingam K, Indulkar C (2017) Solar energy and photovoltaic technology. Distributed generation systems: design, operation and grid integration, p 69

    Chapter  Google Scholar 

  14. Jelle BP, Breivik C, Røkenes HD (2012) Building integrated photovoltaic products: a state-of-the-art review and future research opportunities. Sol Energy Mater Sol Cells 100:69–96

    Article  Google Scholar 

  15. Aberle AG (2009) Thin-film solar cells. Thin solid Films 517(17):4706-4710

    Article  Google Scholar 

  16. Shah AV, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Bailat J (2004) Thin-film silicon solar cell technology. Prog Photovolt Res Appl 12(2–3):113–142

    Article  Google Scholar 

  17. Skandalos N, Karamanis D (2015) PV glazing technologies. Renew Sustain Energy Rev 49:306–322

    Article  Google Scholar 

  18. Heinstein P, Ballif C, Perret-Aebi LE (2013) Building integrated photovoltaics (BIPV): review, potentials, barriers and myths. Green 3(2):125–156

    Article  Google Scholar 

  19. Miyazaki T, Akisawa A, Kashiwagi T (2005) Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew Energy 30:281–304

    Article  Google Scholar 

  20. Husain AA, Hasan WZW, Shafie S, Hamidon MN, Pandey SS (2018) A review of transparent solar photovoltaic technologies. Renew Sustain Energy Rev 94:779–791

    Article  Google Scholar 

  21. Boxwell M (2010) Solar electricity handbook: a simple, practical guide to solar energy-designing and installing photovoltaic solar electric systems. Greenstream Publishing

    Google Scholar 

  22. Zhao Y, Meek GA, Levine BG, Lunt RR (2014) Near-infrared harvesting transparent luminescent solar concentrators. Adv Opt Mater 2:606–611. https://doi.org/10.1002/adom.201400103

    Article  Google Scholar 

  23. Tschörtner J, Lai B, Krömer JO (2019) Biophotovoltaics: green power generation from sunlight and water. Front Microbiol 10:866

    Article  Google Scholar 

  24. Mccormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC et al (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ Sci 4:4699–4709. https://doi.org/10.1039/C1EE01965A

    Article  Google Scholar 

  25. Bradley RW, Bombelli P, Rowden SJ, Howe CJ (2012) Biological photovoltaics: intra- and extra-cellular electron transport by cyanobacteria. Biochem Soc Trans 40:1302–1307. https://doi.org/10.1042/bst20120118

    Article  Google Scholar 

  26. Skea J, van Diemen R, Hannon M, Gazis E, Rhodes A (2019) Building integrated photovoltaics. In Energy innovation for the twenty-first century. Edward Elgar Publishing

    Google Scholar 

  27. Roberts S, Guariento N (2009) Building integrated photovoltaics: a handbook. Walter de Gruyter

    Google Scholar 

  28. Schoen T, Prasad D, Ruoss D, Eiffert P, Sørensen H (2001) Task 7 of the IEA PV power systems program–achievements and outlook. In Proceedings of the 17th European photovoltaic solar conference

    Google Scholar 

  29. Wall M, Probst MCM, Roecker C, Dubois MC, Horvat M, Jørgensen OB, Kappel K (2012) Achieving solar energy in architecture-IEA SHC Task 41. Energy Procedia 30:1250–1260

    Article  Google Scholar 

  30. Probst MM, Roecker C (2012) Criteria for architectural integration of active solar systems IEA task 41, subtask. A Energy Procedia 30:1195–1204

    Article  Google Scholar 

  31. Keoleian GA, Lewis GM (2003) Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US. Renew Energy 28(2):271–293

    Article  Google Scholar 

  32. Reijenga TH, Kaan HF (2011) PV in architecture. Handbook of photovoltaic science and engineering, 2nd edn. Wiley, Chichester, UK, pp 1043–1077

    Chapter  Google Scholar 

  33. Pearsall NM, Hill R (2001) Photovoltaic modules, systems and applications. Clean Electr Photovolt 1:1–42

    Article  Google Scholar 

  34. Strong S (2010) Building integrated photovoltaics (BIPV). Whole Buil Des Guide 9

    Google Scholar 

  35. Wambach K, Muller A, Alsema EA (2005) Life cycle analysis of a solar module recycling process. In: European photovoltaic solar energy conference, p 8AV. 3. 1

    Google Scholar 

  36. Lamnatou C, Notton G, Chemisana D, Cristofari C (2015) The environmental performance of a building-integrated solar thermal collector, based on multiple approaches and life-cycle impact assessment methodologies. Build Environ 87:45–58

    Article  Google Scholar 

  37. Kaan H, Reijenga T (2004) Photovoltaics in an architectural context. Prog Photovolt Res Appl 12(6):395–408

    Article  Google Scholar 

  38. Farkas K, Frontini F, Maturi L, Munar Probst MC, Roecker C, Scognamiglio A (2013) Designing photovoltaic systems for architectural integration (No. REP_WORK). Farkas, Klaudia pour international energy agency solar heating and cooling programme

    Google Scholar 

  39. Zhang W, Anaya M, Lozano G, Calvo ME, Johnston MB, Míguez H, Snaith HJ (2015) Highly efficient perovskite solar cells with tunable structural color. Nano Lett 15(3):1698–1702

    Article  Google Scholar 

  40. Lee KT, Fukuda M, Joglekar S, Guo LJ (2015) Colored, see-through perovskite solar cells employing an optical cavity. J Mater Chem C 3(21):5377–5382

    Article  Google Scholar 

  41. Scognamiglio A, Farkas K, Frontini F, Maturi L (2012) Architectural quality and photovoltaic products. In Proceedings of the 27th European photovoltaic solar energy conference and exhibition (EU PVSEC), Frankfurt, Germany, pp 24–28

    Google Scholar 

  42. Buker MS, Riffat SB (2015) Building integrated solar thermal collectors–a review. Renew Sustain Energy Rev 51:327–346

    Article  Google Scholar 

  43. Shukla A, Nkwetta DN, Cho YJ, Stevenson V, Jones P (2012) A state of art review on the performance of transpired solar collector. Renew Sustain Energy Rev 16(6):3975–3985

    Article  Google Scholar 

  44. Tripanagnostopoulos Y, Tzavellas D, Zoulia I, Chortatou M. (2001) Hybrid PV/T systems with dual heat extraction operation. In Proceedings of the 17th PV solar energy conference, Munich (pp 22–26)

    Google Scholar 

  45. Charron R, Athienitis AK (2006) Optimization of the performance of double-facades with integrated photovoltaic panels and motorized blinds. Sol Energy 80(5):482–491

    Article  Google Scholar 

  46. Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    Article  Google Scholar 

  47. Probst MCM, Roecker C (2011) Architectural integration and design of solar thermal systems. EPFL Press

    Google Scholar 

  48. Mills D (2004) Advances in solar thermal electricity technology. Sol Energy 76(1):19–31

    Article  Google Scholar 

  49. Slaman M, Griessen R (2009) Solar collector overheating protection. Sol Energy 83:982–987

    Article  Google Scholar 

  50. Munari Probst MC (2009) Architectural integration and design of solar thermal systems (No THESIS). EPFL

    Google Scholar 

  51. Abd-Elhady MS, Nasreldin M, Elsheikh MN (2017) Improving the performance of evacuated tube heat pipe collectors using oil and foamed metals. Ain Shams Eng J

    Google Scholar 

  52. Tang R, Li Z, Zhong H, Lan Q (2006) Assessment of uncertainty in mean heat loss coefficient of all glass evacuated solar collector tube testing energy conver. Manage 47:60–67

    Google Scholar 

  53. Shah LJ, Furbo S (2004) Vertical evacuated tubular-collectors utilizing solar radiation, from all directions. Appl Energy 78:371–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Hachem-Vermette .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hachem-Vermette, C. (2020). Active Solar Technologies. In: Solar Buildings and Neighborhoods. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-47016-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47016-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47015-9

  • Online ISBN: 978-3-030-47016-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics