Skip to main content

Decades of Research and Advancements on Fabrication and Applications of Silk Fibroin Blended Hydrogels

  • Conference paper
  • First Online:
Advances in Computational and Bio-Engineering (CBE 2019)

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 15))

Included in the following conference series:

  • 368 Accesses

Abstract

The Hydrogels are tunable three dimensional polymer network attractive for their rich hydrophilicity along with structural similarity with the extracellular matrix that provide a cell proliferation and facilitate rapid cell to cell communication. These Hydrogels are largely focussed by many researchers in the field of medicine due to its capacity to act as scaffold for tissue regeneration, as injectable Hydrogel for sustained drug delivery, in encapsulation of the enzymes and many more. These are prepared by either natural or artificial polymer or both and the nature of selection of polymer depends on its functional characteristics. In this review we reminisce different fabrication techniques and applications of Silk Fibroin (SF) blended with other polymers. SF acts as an attractive class due to excellent mechanical strength, biocompatibility that doesn’t trigger any adverse immunological reaction and manageable biodegradation; in addition this Silk biomaterial has been used for suturing from past many centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Sood, M.S. Granick, N.L. Tomaselli, Wound dressings and comparative effectiveness data. Adv. Wound Care (New Rochelle) 3(8), 511–529 (2014)

    Google Scholar 

  2. C.M. Kirschner, K.S. Anseth, Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61(3), 931–944 (2013)

    Google Scholar 

  3. I. Gibs, H. Janik, Review: synthetic polymer Hydrogels for biomedical applications. Chem. Chem. Tech. 4, 297–304 (2010)

    Google Scholar 

  4. P. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1–16 (2003)

    Google Scholar 

  5. S. Seo, C. Mahapatra, R. Singh, J. Knowles, H. Kim, Strategies for osteochondral repair: focus on scaffolds. J. Tissue Eng. 5, 2041731414541850 (2014)

    Google Scholar 

  6. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, L. Kaplan, Silk-based biomaterials. Biomaterials 24(3), 401–416 (2003)

    Google Scholar 

  7. Serica Technologies. http://www.sericainc.com/en-us/news/2009

  8. T. Yucel, M.L. Lovett, L. Kaplan, Silk-based biomaterials for sustained drug delivery. J. Control Release 190, 381–397 (2014)

    Google Scholar 

  9. B. Kundu, N. Kurland, S. Banoa, C. Patrac, F. Engel, K. Vamsi, V. Yadavalli, S. Kundu, Silk proteins for biomedical applications: bioengineering perspectives. Prog. Polym. Sci. 39, 251–267 (2014)

    Google Scholar 

  10. S. Bauer, P. Schmuki, K. Von Der Mark, J. Park, Engineering biocompatible implant surfaces part I: materials and surfaces. Prog. Mater Sci. 58, 261–326 (2013)

    Google Scholar 

  11. T. Furuzono, A. Kishida, J. Tanaka, Nano-scaled hydroxyapatite/polymer composite I Coating of sintered hydroxyapatite particles on poly (gamma-methacryloxypropyl trimethoxysilane) grafted Silk Fibroin fibers through chemical bonding. J. Mater. Sci. Mater. Med. 15(1), 19–23 (2004)

    Google Scholar 

  12. Y. Zhang, P. Zhao, Z. Dong, D. Wang, P. Guo, X. Guo, Q. Song, W. Zhang, Q. Xia, Comparative proteome analysis of multi-layer cocoon of the Silkworm, Bombyx mori. PLoS ONE 10(4), e0123403 (2015)

    Google Scholar 

  13. H.J. Jin, D.L. Kaplan, Mechanism of silk processing in insects and spiders. Nature 424(6952), 1057–1061 (2003)

    Google Scholar 

  14. H. Yamada, Y. Igarashi, Y. Takasu, H. Saito, K. Tsubouchi, Identification of Fibroin-derived peptides enhancing the proliferation of cultured human skin fibroblasts. Biomaterials 25(3), 467–472 (2003)

    Google Scholar 

  15. A. Zuluaga-Vélez, D.F. Cómbita-Merchán, R. Buitrago-Sierra, J.F. Santa, E. Aguilar-Fernández, J.C. Sepúlveda-Arias, Silk Fibroin hydrogels from the Colombian silkworm Bombyx mori L: evaluation of physicochemical properties. PLoS ONE 14(3), e0213303 (2019)

    Google Scholar 

  16. U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan, Three-dimensional aqueous-derived biomaterial scaffolds from Silk Fibroin. Biomaterials 26(15), 2775–2785 (2005)

    Google Scholar 

  17. T.D. Gordon, L. Schloesser, D.E. Humphries, M. Spector, Effects of the degradation rate of collagen matrices on articular chondrocyte proliferation and biosynthesis in vitro. Tissue Eng. 10(7–8), 1287–1295 (2004)

    Google Scholar 

  18. K. Hu, F. Cui, Q. Lv, J. Ma, Q. Feng, L. Xu, D. Fan, Preparation of Fibroin/recombinant human-like collagen scaffold to promote fibroblasts compatibility. J. Biomed. Mater. Res. A 84(2), 483–490 (2008)

    Google Scholar 

  19. Q. Lv, K. Hu, Q. Feng, F. Cui, Fibroin/collagen hybrid Hydrogels with crosslinking method: preparation, properties, and cytocompatibility. J. Biomed. Mater. Res. A 84(1), 198–207 (2008)

    Google Scholar 

  20. P. Chomchalao, S. Pongcharoen, M. Sutheerawattananonda, W. Tiyaboonchai, Fibroin and Fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed. Eng. Online 12, 28 (2013)

    Google Scholar 

  21. S.K. Samal, M. Dash, F. Chiellini, X. Wang, E. Chiellini, H.A. Declercq, D.L. Kaplan, Silk/chitosan biohybrid Hydrogels and scaffolds via green technology. RSC Adv. 4, 53547 (2014)

    Google Scholar 

  22. S. Thomas, Alginate dressings in surgery and wound management—part 3. J. Wound Care 9(4), 163–166 (2000)

    Google Scholar 

  23. K. Ziv, H. Nuhn, Y. Ben-Haim, L.S. Sasportas, P.J. Kempen, T.P. Niedringhaus, M. Hrynyk, R. Sinclair, A.E. Barron, S.S. Gambhir, A tunable Silk-alginate Hydrogel scaffold for stem cell culture and transplantation. Biomaterials 35(12), 3736–3743 (2000)

    Google Scholar 

  24. J. Ming, Z. Jiang, P. Wang, S. Bie, B. Zuo, Silk Fibroin/sodium alginate fibrous Hydrogels regulated hydroxyapatite crystal growth. Mater. Sci. Eng. C 51, 287–293 (2000)

    Google Scholar 

  25. J. Ming, S. Bie, Z. Jiang, P. Wang, B. Zuo, Novel hydroxyapatite nanorods crystal growth in Silk Fibroin/sodium alginate nanofiber Hydrogel. Mater. Lett. 126, 169–173 (2014)

    Google Scholar 

  26. E.S. Gil, D.J. Frankowski, R.J. Spontak, S.M. Hudson, Swelling behavior and morphological evolution of mixed gelatin/Silk Fibroin Hydrogels. Biomacromolecules 6(6), 3079–3087 (2005)

    Google Scholar 

  27. X. Hu, D. Kaplan, Silk biomaterials, in Comprehensive Biomaterials. 207–19 (2011)

    Google Scholar 

  28. J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cell-laden microengineered gelatin methacrylate Hydrogels. Biomaterials 31, 5536–5544 (2010)

    Google Scholar 

  29. H. Aubin, J.W. Nichol, C.B. Hutson, H. Bae, A.L. Sieminski, D.M. Cropek, P. Akhyari, A. Khademhosseini, Directed 3D cell alignment and elongation in microengineered Hydrogels. Biomaterials 31(27), 6941–6951 (2010)

    Google Scholar 

  30. X. Hu, Q. Lu, L. Sun, P. Cebe, X. Wang, X. Zhang, D.L. Kaplan, Biomaterials from ultrasonication-induced Silk Fibroin-hyaluronic acid Hydrogels. Biomacromolecules 11(11), 3178–3188 (2010)

    Google Scholar 

  31. R. Elia, D.R. Newhide, P.D. Pedevillano, G.R. Reiss, M.A. Firpo, E.W. Hsu, D.L. Kaplan, G.D. Prestwich, A. Peattie, Silk-hyaluronan-based composite Hydrogels: a novel, securable vehicle for drug delivery. J. Biomater. Appl. 27(6), 749–762 (2013)

    Google Scholar 

  32. M. Pavlovic, X. Serban, N. Yu, M.J. Manesis, Cross-linked Silk-hyaluronic acid compositions. Google Patents, US Patent App. 13/868,010 (2013)

    Google Scholar 

  33. D. Zhang, K. Chen, L. Wu, D. Wang, S. Ge, Synthesis and characterization of PVA-HA-Silk composite hydrogel by orthogonal experiment. J. Bionic Eng. 9, 234–242 (2012)

    Google Scholar 

  34. T. Suopajärvi, E. Koivuranta, H. Liimatainen, J. Niinimäki, J. Environ. Chem. Eng. 2, 2005–2012 (2014)

    Google Scholar 

  35. H.J. Kim, Y.J. Yang, H.J. Oh, S. Kimura, M. Wada, U.-J. Kim, (Springer, 2017). https://doi.org/10.1007/s10570-017-1491-7

  36. Y. Liu, J. Lim, S.H. Teoh, Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol. Adv. 31(5), 688–705 (2013)

    Google Scholar 

  37. M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N. Nicoli Aldini, M. Tschon, R. Giardino, C. Migliaresi, The healing of confined critical size cancellous defects in the presence of Silk Fibroin Hydrogel. Biomaterials 26(17), 3527–3536 (2005)

    Google Scholar 

  38. M. Samee, S. Kasugai, H. Kondo, K. Ohya, H. Shimokawa, S. Kuroda, Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J. Pharmacol. Sci. 108(1), 18–31 (2008)

    Google Scholar 

  39. M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, S. Li, Y. Deng, N. He, Injectable Hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017)

    Google Scholar 

  40. F. Mirahmadi, M. Tafazzoli-Shadpour, M.A. Shokrgozar, S. Bonakdar, Enhanced mechanical properties of thermosensitive chitosan Hydrogel by Silk fibers for cartilage tissue engineering. Mater. Sci. Eng. C 33, 4786–4794 (2013)

    Google Scholar 

  41. E.G. Lima, L. Bian, K.W. Ng, R.L. Mauck, B.A. Byers, R.S. Tuan, G.A. Ateshian, C.T. Hung, The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis Cartilage 15(9), 1025–1033 (2007)

    Google Scholar 

  42. K.D. Kochanek, J. Xu, S.L. Murphy, A.M. Miniño, H.C. Kung, Deaths: final data for 2009. Natl. Vital Stat. Rep. 60(3), 1–116 (2007)

    Google Scholar 

  43. M. Floren, W. Bonani, A. Dharmarajan, A. Motta, C. Migliaresi, W. Tan, Human mesenchymal stem cells cultured on Silk Hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Acta Biomater. 31, 156–166 (2016)

    Google Scholar 

  44. W. Sun, T. Incitti, C. Migliaresi, A. Quattrone, S. Casarosa, A. Motta, Genipin-crosslinked gelatin-Silk Fibroin Hydrogels for modulating the behaviour of pluripotent cells. J. Tissue Eng. Regen. Med. 10(10), 876–887 (2016)

    Google Scholar 

  45. C.S. Kim, Y.J. Yang, S.Y. Bahn, H.J. Cha, A bioinspired dual-crosslinked tough Silk protein Hydrogel as a protective biocatalytic matrix for carbon sequestration. NPG Asia Mater. 9, e391 (2017)

    Google Scholar 

  46. C. Yan, A. Altunbas, T. Yucel, R.P. Nagarkar, J.P. Schneider, D.J. Pochan, Injectable solid Hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide Hydrogels. Soft Matter 6(20), 5143–5156 (2010)

    Google Scholar 

  47. J.Y. Fang, J.P. Chen, Y.L. Leu, H.Y. Wang, Characterization and evaluation of Silk protein Hydrogels for drug delivery. Chem. Pharm. Bull. (Tokyo) 54(2), 156–162 (2006)

    Google Scholar 

  48. Z. Gong, Y. Yang, Q. Ren, X. Chen, Z. Shao, Injectable thixotropic Hydrogel comprising regenerated Silk Fibroin and hydroxypropylcellulose. Soft Matter 8, 2875–2883 (2012)

    Google Scholar 

  49. Z. Ding, H. Han, Z. Fan, H. Lu, Y. Sang, Y. Yao, Q. Cheng, Q. Lu, D.L. Kaplan, Nanoscale Silk–Hydroxyapatite Hydrogels for injectable bone biomaterials. ACS Appl. Mater. Interfaces 16913–16921 (2017)

    Google Scholar 

  50. H.W. Ju, O.J. Lee, B.M. Moon, F.A. Sheikh, J.M. Lee, J.-H. Kim, H.J. Park, D.W. Kim, M.C. Lee, S.H. Kim, C.H. Park, H.R. Lee, Silk Fibroin based Hydrogel for regeneration of burn induced wounds. Tissue Eng. Regenerative Med. 11, 203–210 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufia Sultana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sultana, S., Mamatha, D.M., Rahamathulla, S. (2020). Decades of Research and Advancements on Fabrication and Applications of Silk Fibroin Blended Hydrogels. In: Jyothi, S., Mamatha, D., Satapathy, S., Raju, K., Favorskaya, M. (eds) Advances in Computational and Bio-Engineering. CBE 2019. Learning and Analytics in Intelligent Systems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-46939-9_20

Download citation

Publish with us

Policies and ethics