Skip to main content

Orthobiologic Treatment Options for Stress Fractures

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

Orthobiologics are a cohort of bioactive substances which have been recently used to aid healing in the musculoskeletal system. Orthobiologic agents with relevance to stress fractures include bone graft, synthetic bone graft alternatives, growth factors, stem-cell based treatments, and cell-directing proteins. Autologous bone grafting has been safely used in the management of stress fractures of the tibial diaphysis, metatarsal, navicular, great toe sesamoid, lumbar spine, and olecranon. There is growing evidence to support the safe use of bone marrow aspirate concentrate in the management of stress fractures of the fifth metatarsal, medial malleolus, and cuneiform. However, the available evidence does not confirm that the use of orthobiologic agents provides superior healing properties to non-orthobiologic treatment. Future potential orthobiologic options for stress fracture surgery include platelet-rich plasma and platelet-derived growth factor. Orthobiologic agents appear to be a safe adjunct in stress fracture surgery. However, it remains to be confirmed whether their addition actually enhances the fracture healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calcei JG, Rodeo SA. Orthobiologics for bone healing. Clin Sports Med. 2019;38(1):79–95.

    Google Scholar 

  2. Toogood PA, Bahney C, Marcucio R, Miclau T. Biologic and biophysical technologies for the enhancement of fracture repair. In: Tornetta 3rd P, Ricci WM, Ostrum RF, McQueen MM, McKee MD, Court-Brown C, editors. Rockwood and green's fractures in adults. 9th ed. Philadelphia: Wolters Kluwer Health; 2019. p. 61–79.

    Google Scholar 

  3. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.

    PubMed  PubMed Central  Google Scholar 

  4. Bray CC, Walker CM, Spence DD. Orthobiologics in pediatric sports medicine. Orthop Clin North Am. 2017;48(3):333–42.

    Google Scholar 

  5. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.

    Google Scholar 

  6. Egol KA, Nauth A, Lee M, Pape HC, Watson JT, Borrelli J Jr. Bone grafting: sourcing, timing, strategies, and alternatives. J Orthop Trauma. 2015;29(Suppl 12):S10–4.

    Google Scholar 

  7. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84(3):454–64.

    Google Scholar 

  8. Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury. 2007;38(Suppl 1):S75–80.

    Google Scholar 

  9. Johansson C, Ekeman I, Lewander R. Stress fracture of the tibia in athletes: diagnosis and natural course. Scand J Med Sci Sports. 1992;2:87–91.

    Google Scholar 

  10. Miyamoto RG, Dhotar HS, Rose DJ, Egol K. Surgical treatment of refractory tibial stress fractures in elite dancers: a case series. Am J Sports Med. 2009;37(6):1150–4.

    Google Scholar 

  11. Orava S, Karpakka J, Hulkko A, Vaananen K, Takala T, Kallinen M, et al. Diagnosis and treatment of stress fractures located at the mid-tibial shaft in athletes. Int J Sports Med. 1991;12(4):419–22.

    CAS  Google Scholar 

  12. Orava S, Hulkko A. Stress fracture of the mid-tibial shaft. Acta Orthop Scand. 1984;55(1):35–7.

    CAS  Google Scholar 

  13. Orava S, Hulkko A. Delayed unions and nonunions of stress fractures in athletes. Am J Sports Med. 1988;16(4):378–82.

    CAS  Google Scholar 

  14. Green NE, Rogers RA, Lipscomb AB. Nonunions of stress fractures of the tibia. Am J Sports Med. 1985;13(3):171–6.

    CAS  Google Scholar 

  15. Gigis I, Rallis I, Gigis P, Goulios V. Anterior Tibial Cortex Stress Fracture in a High Demand Professional Soccer. Player J Med Cases. 2011;2(5):210–5.

    Google Scholar 

  16. Borens O, Sen MK, Huang RC, Richmond J, Kloen P, Jupiter JB, et al. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes: a report of 4 cases. J Orthop Trauma. 2006;20(6):425–30.

    Google Scholar 

  17. Khan KM, Fuller PJ, Brukner PD, Kearney C, Burry HC. Outcome of conservative and surgical management of navicular stress fracture in athletes. Eighty-six cases proven with computerized tomography. Am J Sports Med. 1992;20(6):657–66.

    CAS  Google Scholar 

  18. McCormick JJ, Bray CC, Davis WH, Cohen BE, Jones CP 3rd, Anderson RB. Clinical and computed tomography evaluation of surgical outcomes in tarsal navicular stress fractures. Am J Sports Med. 2011;39(8):1741–8.

    Google Scholar 

  19. Fitch KD, Blackwell JB, Gilmour WN. Operation for non-union of stress fracture of the tarsal navicular. J Bone Joint Surg Br. 1989;71(1):105–10.

    CAS  Google Scholar 

  20. Saxena A, Fullem B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int. 2006;27(11):917–21.

    Google Scholar 

  21. Torg JS, Pavlov H, Cooley LH, Bryant MH, Arnoczky SP, Bergfeld J, et al. Stress fractures of the tarsal navicular. A retrospective review of twenty-one cases. J Bone Joint Surg Am. 1982;64(5):700–12.

    CAS  Google Scholar 

  22. Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg. 2000;39(2):96–103.

    CAS  Google Scholar 

  23. Miller D, Marsland D, Jones M, Calder J. Early return to playing professional football following fixation of 5th metatarsal stress fractures may lead to delayed union but does not increase the risk of long-term non-union. Knee Surg Sports Traumatol Arthrosc. 2018.

    Google Scholar 

  24. Popovic N, Jalali A, Georis P, Gillett P. Proximal fifth metatarsal diaphyseal stress fractures in football players. Foot Ankle Surg. 2005;11:135–41.

    Google Scholar 

  25. Lee KT, Park YU, Young KW, Kim JS, Kim JB. The plantar gap: another prognostic factor for fifth metatarsal stress fracture. Am J Sports Med. 2011;39(10):2206–11.

    Google Scholar 

  26. Rongstad KM, Tueting J, Rongstad M, Garrels K, Meis R. Fourth metatarsal base stress fractures in athletes: a case series. Foot Ankle Int. 2013;34(7):962–8.

    Google Scholar 

  27. Muscolo L, Migues A, Slullitel G, Costa-Paz M. Stress fracture nonunion at the base of the second metatarsal in a ballet dancer: a case report. Am J Sports Med. 2004;32(6):1535–7.

    Google Scholar 

  28. Anderson RB, McBryde AM Jr. Autogenous bone grafting of hallux sesamoid nonunions. Foot Ankle Int. 1997;18(5):293–6.

    CAS  Google Scholar 

  29. Nozawa S, Shimizu K, Miyamoto K, Tanaka M. Repair of pars interarticularis defect by segmental wire fixation in young athletes with spondylolysis. Am J Sports Med. 2003;31(3):359–64.

    Google Scholar 

  30. Hardcastle PH. Repair of spondylolysis in young fast bowlers. J Bone Joint Surg Br. 1993;75(3):398–402.

    CAS  Google Scholar 

  31. Debnath UK, Freeman BJ, Gregory P, de la Harpe D, Kerslake RW, Webb JK. Clinical outcome and return to sport after the surgical treatment of spondylolysis in young athletes. J Bone Joint Surg Br. 2003;85(2):244–9.

    CAS  Google Scholar 

  32. Menga EN, Kebaish KM, Jain A, Carrino JA, Sponseller PD. Clinical results and functional outcomes after direct intralaminar screw repair of spondylolysis. Spine (Phila Pa 1976). 2014;39(1):104–10.

    Google Scholar 

  33. Sutton JH, Guin PD, Theiss SM. Acute lumbar spondylolysis in intercollegiate athletes. J Spinal Disord Tech. 2012;25(8):422–5.

    Google Scholar 

  34. Raudenbush BL, Chambers RC, Silverstein MP, Goodwin RC. Indirect pars repair for pediatric isthmic spondylolysis: a case series. J Spine Surg. 2017;3(3):387–91.

    PubMed  PubMed Central  Google Scholar 

  35. Devas MB. Stress fractures of the femoral neck. J Bone Joint Surg Br. 1965;47(4):728–38.

    CAS  Google Scholar 

  36. Lee CH, Huang GS, Chao KH, Jean JL, Wu SS. Surgical treatment of displaced stress fractures of the femoral neck in military recruits: a report of 42 cases. Arch Orthop Trauma Surg. 2003;123(10):527–33.

    Google Scholar 

  37. Visuri T, Vara A, Meurman KO. Displaced stress fractures of the femoral neck in young male adults: a report of twelve operative cases. J Trauma. 1988;28(11):1562–9.

    CAS  Google Scholar 

  38. Volpin G, Hoerer D, Groisman G, Zaltzman S, Stein H. Stress fractures of the femoral neck following strenuous activity. J Orthop Trauma. 1990;4(4):394–8.

    CAS  Google Scholar 

  39. Haddad FS, Bann S, Hill RA, Jones DH. Displaced stress fracture of the femoral neck in an active amenorrhoeic adolescent. Br J Sports Med. 1997;31(1):70–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pavlov H, Torg JS, Jacobs B, Vigorita V. Nonunion of olecranon epiphysis: two cases in adolescent baseball pitchers. AJR Am J Roentgenol. 1981;136(4):819–20.

    CAS  Google Scholar 

  41. Torg JS, Moyer RA. Non-union of a stress fracture through the olecranon epiphyseal plate observed in an adolescent baseball pitcher. A case report. J Bone Joint Surg Am. 1977;59(2):264–5.

    CAS  Google Scholar 

  42. Rettig AC, Wurth TR, Mieling P. Nonunion of olecranon stress fractures in adolescent baseball pitchers: a case series of 5 athletes. Am J Sports Med. 2006;34(4):653–6.

    Google Scholar 

  43. Suzuki K, Minami A, Suenaga N, Kondoh M. Oblique stress fracture of the olecranon in baseball pitchers. J Shoulder Elb Surg. 1997;6(5):491–4.

    CAS  Google Scholar 

  44. Sagi HC, Young ML, Gerstenfeld L, Einhorn TA, Tornetta P. Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a reamer/irrigator/aspirator) and the iliac crest of the same patient. J Bone Joint Surg Am. 2012;94(23):2128–35.

    Google Scholar 

  45. Blickenstaff LD, Morris JM. Fatigue fracture of the femoral neck. J Bone Joint Surg Am. 1966;48(6):1031–47.

    CAS  Google Scholar 

  46. Robertson GA, Wood AM. Femoral neck stress fractures in sport: a current concepts review. Sports Medicine International Open. 2017;01(02):E58–68.

    Google Scholar 

  47. Neubauer T, Brand J, Lidder S, Krawany M. Stress fractures of the femoral neck in runners: a review. Res Sports Med. 2016:1–15.

    Google Scholar 

  48. Egol KA, Koval KJ, Kummer F, Frankel VH. Stress fractures of the femoral neck. Clin Orthop Relat Res. 1998;348:72–8.

    Google Scholar 

  49. Miller TL, Harris JD, Kaeding CC. Stress fractures of the ribs and upper extremities: causation, evaluation, and management. Sports Med. 2013;43(8):665–74.

    Google Scholar 

  50. Tullos HS, Erwin WD, Woods GW, Wukasch DC, Cooley DA, King JW. Unusual lesions of the pitching arm. Clin Orthop Relat Res. 1972;88:169–82.

    CAS  Google Scholar 

  51. Nguyen A, Beasley I. Calder J. Knee Surg Sports Traumatol Arthrosc: Stress fractures of the medial malleolus in the professional soccer player demonstrate excellent outcomes when treated with open reduction internal fixation and arthroscopic spur debridement; 2019.

    Google Scholar 

  52. Adams SB, Lewis JS Jr, Gupta AK, Parekh SG, Miller SD, Schon LC. Cannulated screw delivery of bone marrow aspirate concentrate to a stress fracture nonunion: technique tip. Foot Ankle Int. 2013;34(5):740–4.

    Google Scholar 

  53. Shakked RJ, Walters EE, O'Malley MJ. Tarsal navicular stress fractures. Curr Rev Musculoskelet Med. 2017;10(1):122–30.

    PubMed  PubMed Central  Google Scholar 

  54. McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res. 2009;27(8):1033–42.

    CAS  Google Scholar 

  55. Gianakos A, Ni A, Zambrana L, Kennedy JG, Lane JM. Bone marrow aspirate concentrate in animal long bone healing: an analysis of basic science evidence. J Orthop Trauma. 2016;30(1):1–9.

    Google Scholar 

  56. Gianakos AL, Sun L, Patel JN, Adams DM, Liporace FA. Clinical application of concentrated bone marrow aspirate in orthopaedics: a systematic review. World J Orthop. 2017;8(6):491–506.

    PubMed  PubMed Central  Google Scholar 

  57. Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005;87(7):1430–7.

    Google Scholar 

  58. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am. 2006;88(Suppl 1 Pt 2):322–7.

    Google Scholar 

  59. Bhargava R, Sankhla S, Gupta A, Changani R, Gagal K. Percutaneous autologus bone marrow injection in the treatment of delayed or nonunion. Indian J Orthop. 2007;41(1):67–71.

    PubMed  PubMed Central  Google Scholar 

  60. Chahla J, Mannava S, Cinque ME, Geeslin AG, Codina D, LaPrade RF. Bone marrow aspirate concentrate harvesting and processing technique. Arthrosc Tech. 2017;6(2):e441–e5.

    PubMed  PubMed Central  Google Scholar 

  61. Weel H, Mallee WH, van Dijk CN, Blankevoort L, Goedegebuure S, Goslings JC, et al. The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures; a double-blind randomized controlled trial. BMC Musculoskelet Disord. 2015;16:211.

    PubMed  PubMed Central  Google Scholar 

  62. Nauth A, Lane J, Watson JT, Giannoudis P. Bone graft substitution and augmentation. J Orthop Trauma. 2015;29(Suppl 12):S34–8.

    Google Scholar 

  63. Yeoh JC, Taylor BA. Osseous healing in foot and ankle surgery with autograft, allograft, and other Orthobiologics. Orthop Clin North Am. 2017;48(3):359–69.

    Google Scholar 

  64. Gross RH. The use of bone grafts and bone graft substitutes in pediatric orthopaedics: an overview. J Pediatr Orthop. 2012;32(1):100–5.

    Google Scholar 

  65. Gillis CC, Eichholz K, Thoman WJ, Fessler RG. A minimally invasive approach to defects of the pars interarticularis: restoring function in competitive athletes. Clin Neurol Neurosurg. 2015;139:29–34.

    Google Scholar 

  66. Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics. 1995;18(12):1153–8.

    CAS  Google Scholar 

  67. Desai P, Hasan SM, Zambrana L, Hegde V, Saleh A, Cohn MR, et al. Bone mesenchymal stem cells with growth factors successfully treat nonunions and delayed unions. HSS J. 2015;11(2):104–11.

    PubMed  PubMed Central  Google Scholar 

  68. Andia I, Latorre PM, Gomez MC, Burgos-Alonso N, Abate M, Maffulli N. Platelet-rich plasma in the conservative treatment of painful tendinopathy: a systematic review and meta-analysis of controlled studies. Br Med Bull. 2014;110(1):99–115.

    CAS  Google Scholar 

  69. Malhotra R, Kumar V, Garg B, Singh R, Jain V, Coshic P, et al. Role of autologous platelet-rich plasma in treatment of long-bone nonunions: a prospective study. Musculoskelet Surg. 2015;99(3):243–8.

    CAS  PubMed  Google Scholar 

  70. Duramaz A, Ursavas HT, Bilgili MG, Bayrak A, Bayram B, Avkan MC. Platelet-rich plasma versus exchange intramedullary nailing in treatment of long bone oligotrophic nonunions. Eur J Orthop Surg Traumatol. 2018;28(1):131–7.

    Google Scholar 

  71. Chahla J, Cinque ME, Piuzzi NS, Mannava S, Geeslin AG, Murray IR, et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical Orthopaedic literature. J Bone Joint Surg Am. 2017;99(20):1769–79.

    Google Scholar 

  72. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res. 1999;14(11):1805–15.

    CAS  Google Scholar 

  73. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002;84(6):1032–44.

    Google Scholar 

  74. Bordei P. Locally applied platelet-derived growth factor accelerates fracture healing. J Bone Joint Surg Br. 2011;93(12):1653–9.

    CAS  Google Scholar 

  75. Christersson A, Sanden B, Larsson S. Prospective randomized feasibility trial to assess the use of rhPDGF-BB in treatment of distal radius fractures. J Orthop Surg Res. 2015;10:37.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Maffulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robertson, G., Maffulli, N. (2020). Orthobiologic Treatment Options for Stress Fractures. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics