Skip to main content

The Role of Ultrasound in the Management of Cardiac Patients

  • Chapter
  • First Online:
Ultrasound Fundamentals

Abstract

Ultrasound technology has developed in recent years and has had an emerging and important role within the field of cardiology. Cardiac patients and those who have had cardiac surgery represent unique challenges. Some examples of the role of ultrasound include regional nerve blocks and fluid assessment. This book chapter summarizes the role of ultrasound in cardiac patients and those who have had cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO|Cardiovascular diseases (CVDs). WHO 2019.

    Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, et al. Heart disease and stroke statistics—2016 update. Circulation. 2016;133:e38–360.

    PubMed  Google Scholar 

  3. Bureau UC: older Americans 2017.

    Google Scholar 

  4. D’Agostino RS, Jacobs JP, Badhwar V, Fernandez FG, Paone G, Wormuth DW, Shahian DM. The Society of Thoracic Surgeons adult cardiac surgery database: 2018 update on outcomes and quality. Ann Thorac Surg. 2018;105:15–23.

    Article  PubMed  Google Scholar 

  5. Chakravarthy M. Regional analgesia in cardiothoracic surgery: a changing paradigm toward opioid-free anesthesia? Ann Card Anaesth. 2018;21:225.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Noss C, Prusinkiewicz C, Nelson G, Patel PA, Augoustides JG, Gregory AJ. Enhanced recovery for cardiac surgery. J Cardiothorac Vasc Anesth. 2018;32:2760–70.

    Article  PubMed  Google Scholar 

  7. Clowes GH, Neville WE, Hopkins A, Anzola J, Simeone FA. Factors contributing to success or failure in the use of a pump oxygenator for complete by-pass of the heart and lung, experimental and clinical. Surgery. 1954;36:557–79.

    PubMed  Google Scholar 

  8. Chaney MA. Intrathecal and epidural anesthesia and analgesia for cardiac surgery. Anesth Analg. 2006;102:45–64.

    Article  CAS  PubMed  Google Scholar 

  9. Kowalewski RJ, MacAdams CL, Eagle CJ, Archer DP, Bharadwaj B. Anaesthesia for coronary artery bypass surgery supplemented with subarachnoid bupivacaine and morphine: a report of 18 cases. Can J Anaesth. 1994;41:1189–95.

    Article  CAS  PubMed  Google Scholar 

  10. Bignami E, Landoni G, Biondi-Zoccai GGL, Boroli F, Messina M, Dedola E, Nobile L, Buratti L, Sheiban I, Zangrillo A. Epidural analgesia improves outcome in cardiac surgery: a meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth. 2010;24:586–97.

    Article  PubMed  Google Scholar 

  11. Chaney MA. Benefits of neuraxial anesthesia in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1997;11:808–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ho AM, Chung DC, Joynt GM. Neuraxial blockade and hematoma in cardiac surgery: estimating the risk of a rare adverse event that has not (yet) occurred. Chest. 2000;117:551–5.

    Article  CAS  PubMed  Google Scholar 

  13. Hemmerling T, Cyr S, Terrasini N. Epidural catheterization in cardiac surgery: the 2012 risk assessment. Ann Card Anaesth. 2013;16:169.

    Article  PubMed  Google Scholar 

  14. Horlocker TT, Wedel DJ, Rowlingson JC, Enneking FK, Kopp SL, Benzon HT, Brown DL, Heit JA, Mulroy MF, Rosenquist RW, Tryba M, Yuan C-S. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med. 2010;35:64–101.

    Article  CAS  PubMed  Google Scholar 

  15. Horlocker TT, Vandermeuelen E, Kopp SL, Gogarten W, Leffert LR, Benzon HT. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy. Reg Anesth Pain Med. 2018;43:263–309.

    Article  PubMed  Google Scholar 

  16. Lee TWR, Grocott HP, Schwinn D, Jacobsohn E. Winnipeg high-spinal anesthesia group: high spinal anesthesia for cardiac surgery: effects on beta-adrenergic receptor function, stress response, and hemodynamics. Anesthesiology. 2003;98:499–510.

    Article  CAS  PubMed  Google Scholar 

  17. Kowalewski R, Seal D, Tang T, Prusinkiewicz C, Ha D. Neuraxial anesthesia for cardiac surgery: thoracic epidural and high spinal anesthesia – why is it different? HSR Proc Intensive Care Cardiovasc Anesth. 2011;3:25–8.

    Google Scholar 

  18. D’Ercole F, Arora H, Kumar PA. Paravertebral block for thoracic surgery. J Cardiothorac Vasc Anesth. 2018;32:915–27.

    Article  PubMed  Google Scholar 

  19. Shora H, El Beleehy AA, Abdelwahab AA, Ali GA, Omran TE, Hassan EA, Arafat AA. Bilateral paravertebral block versus thoracic epidural analgesia for pain control post-cardiac surgery: a randomized controlled trial. Thorac Cardiovasc Surg. 2018; https://doi.org/10.1055/s-0038-1668496.

  20. Scarfe AJ, Schuhmann-Hingel S, Duncan JK, Ma N, Atukorale YN, Cameron AL. Continuous paravertebral block for post-cardiothoracic surgery analgesia: a systematic review and meta-analysis. Eur J Cardio-Thoracic Surg. 2016;50:1010–8.

    Article  Google Scholar 

  21. Pintaric TS, Potocnik I, Hadzic A, Stupnik T, Pintaric M, Novak Jankovic V. Comparison of continuous thoracic epidural with paravertebral block on perioperative analgesia and hemodynamic stability in patients having open lung surgery. Reg Anesth Pain Med. 2011;36:256–60.

    Article  CAS  PubMed  Google Scholar 

  22. Blanco R. The ‘pecs block’: a novel technique for providing analgesia after breast surgery. Anaesthesia. 2011;66:847–8.

    Article  CAS  PubMed  Google Scholar 

  23. Blanco R, Fajardo M, Parras Maldonado T. Ultrasound description of Pecs II (modified Pecs I): a novel approach to breast surgery. Rev Esp Anestesiol Reanim. 2012;59:470–5.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar KN, Kalyane RN, Singh NG, Nagaraja PS, Krishna M, Babu B, Varadaraju R, Sathish N, Manjunatha N. Efficacy of bilateral pectoralis nerve block for ultrafast tracking and postoperative pain management in cardiac surgery. Ann Card Anaesth. 2018;21:333–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fujiwara A, Komasawa N, Minami T. Pectoral nerves (PECS) and intercostal nerve block for cardiac resynchronization therapy device implantation. Springerplus. 2014;3:409.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yalamuri S, Klinger RY, Bullock WM, Glower DD, Bottiger BA, Gadsden JC. Pectoral fascial (PECS) I and II blocks as rescue analgesia in a patient undergoing minimally invasive cardiac surgery. Reg Anesth Pain Med. 2017;42:764–6.

    Article  PubMed  Google Scholar 

  27. Blanco R, Parras T, McDonnell JG, Prats-Galino A. Serratus plane block: a novel ultrasound-guided thoracic wall nerve block. Anaesthesia. 2013;68:1107–13.

    Article  CAS  PubMed  Google Scholar 

  28. Khalil AE, Abdallah NM, Bashandy GM, Kaddah TA-H. Ultrasound-guided serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain. J Cardiothorac Vasc Anesth. 2017;31:152–8.

    Article  PubMed  Google Scholar 

  29. Hetta DF, Rezk KM. Pectoralis-serratus interfascial plane block vs thoracic paravertebral block for unilateral radical mastectomy with axillary evacuation. J Clin Anesth. 2016;34:91–7.

    Article  PubMed  Google Scholar 

  30. Moll V, Maffeo C, Mitchell M, Ward CT, Groff RF, Lee SC, Halkos ME, Jabaley CS, O’Reilly-Shah VN. Association of serratus anterior plane block for minimally invasive direct coronary artery bypass surgery with higher opioid consumption: a retrospective observational study. J Cardiothorac Vasc Anesth. 2018;32:2570–7.

    Article  PubMed  Google Scholar 

  31. Kaushal B, Chauhan S, Saini K, Bhoi D, Bisoi AK, Sangdup T, Khan MA. Comparison of the efficacy of ultrasound-guided serratus anterior plane block, pectoral nerves II block, and intercostal nerve block for the management of postoperative thoracotomy pain after pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33:418–25.

    Article  PubMed  Google Scholar 

  32. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector spinae plane block: a novel analgesic technique in thoracic neuropathic pain. Reg Anesth Pain Med. 2016;41:621–7.

    Article  CAS  PubMed  Google Scholar 

  33. Adhikary SD, Bernard S, Lopez H, Chin KJ. Erector spinae plane block versus Retrolaminar block: a magnetic resonance imaging and anatomical study. Reg Anesth Pain Med. 2018;43:756–62.

    PubMed  Google Scholar 

  34. Costache I, Pawa A, Abdallah FW. Paravertebral by proxy – time to redefine the paravertebral block. Anaesthesia. 2018;73:1185–8.

    Google Scholar 

  35. Krishna SN, Chauhan S, Bhoi D, Kaushal B, Hasija S, Sangdup T, Bisoi AK. Bilateral erector spinae plane block for acute post-surgical pain in adult cardiac surgical patients: a randomized controlled trial. J Cardiothorac Vasc Anesth. 2019;33:368–75.

    Article  PubMed  Google Scholar 

  36. Nagaraja PS, Ragavendran S, Singh NG, Asai O, Bhavya G, Manjunath N, Rajesh K. Comparison of continuous thoracic epidural analgesia with bilateral erector spinae plane block for perioperative pain management in cardiac surgery. Ann Card Anaesth. 2018;21:323–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leyva FM, Mendiola WE, Bonilla AJ, Cubillos J, Moreno DA, Chin KJ. Continuous erector spinae plane (ESP) block for postoperative analgesia after minimally invasive mitral valve surgery. J Cardiothorac Vasc Anesth. 2018;32:2271–4.

    Article  PubMed  Google Scholar 

  38. Ueshima H, Hiroshi O. Transapical transcatheter aortic valve implantation performed with an erector spinae plane block. J Clin Anesth. 2018;46:84.

    Article  PubMed  Google Scholar 

  39. Ho AM-H, Karmakar MK, Ng SK, Wan S, Ng CSH, Wong RHL, Chan SKC, Joynt GM. Local anaesthetic toxicity after bilateral thoracic paravertebral block in patients undergoing coronary artery bypass surgery. Anaesth Intensive Care. 2016;44:615–9.

    Article  PubMed  Google Scholar 

  40. Ueshima H, Otake H. Ultrasound-guided pectoral nerves (PECS) block: complications observed in 498 consecutive cases. J Clin Anesth. 2017;42:46.

    Article  PubMed  Google Scholar 

  41. Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, Oropello J, Vieillard-Baron A, Axler O, Lichtenstein D, Maury E, Slama M, Vignon P. American College of Chest Physicians/La Société de Réanimation de langue Française statement on competence in critical care ultrasonography. Chest. 2009;135:1050–60.

    Article  PubMed  Google Scholar 

  42. Repessé X, Charron C, Vieillard-Baron A. Intensive care ultrasound: V. Goal-directed echocardiography. Ann Am Thorac Soc. 2014;11:122–8.

    Article  PubMed  Google Scholar 

  43. Ceruti S, Anselmi L, Minotti B, Franceschini D, Aguirre J, Borgeat A, Saporito A. Prevention of arterial hypotension after spinal anaesthesia using vena cava ultrasound to guide fluid management. Br J Anaesth. 2018;120:101–8.

    Article  CAS  PubMed  Google Scholar 

  44. Salama ER, Elkashlan M. Pre-operative ultrasonographic evaluation of inferior vena cava collapsibility index and caval aorta index as new predictors for hypotension after induction of spinal anaesthesia. Eur J Anaesthesiol. 2019;36:297–302.

    Article  CAS  PubMed  Google Scholar 

  45. Saranteas T, Spiliotaki H, Koliantzaki I, Koutsomanolis D, Kopanaki E, Papadimos T, Kostopanagiotou G. The utility of echocardiography for the prediction of spinal-induced hypotension in elderly patients: inferior vena cava assessment is a key player. J Cardiothorac Vasc Anesth. 2019;33(9):2421–7.

    Article  PubMed  Google Scholar 

  46. Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, Troughton RW. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:40–56.

    Article  PubMed  Google Scholar 

  47. Prekker ME, Scott NL, Hart D, Sprenkle MD, Leatherman JW. Point-of-care ultrasound to estimate central venous pressure. Crit Care Med. 2013;41:833–41.

    Article  PubMed  Google Scholar 

  48. Gaspari R, Weekes A, Adhikari S, Noble VE, Nomura JT, Theodoro D, Woo M, Atkinson P, Blehar D, Brown SM, Caffery T, Douglass E, Fraser J, Haines C, Lam S, Lanspa M, Lewis M, Liebmann O, Limkakeng A, Lopez F, Platz E, Mendoza M, Minnigan H, Moore C, Novik J, Rang L, Scruggs W, Raio C. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016;109:33–9.

    Article  PubMed  Google Scholar 

  49. Miesemer B. Using ultrasound for cardiac arrest POCUS can improve detection and treatment of underlying pathologies. EMS World. 2017;46:40–2.

    PubMed  Google Scholar 

  50. Blanco P, Martínez Buendía C. Point-of-care ultrasound in cardiopulmonary resuscitation: a concise review. J Ultrasound. 2017;20:193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Clattenburg EJ, Wroe P, Brown S, Gardner K, Losonczy L, Singh A, Nagdev A. Point-of-care ultrasound use in patients with cardiac arrest is associated prolonged cardiopulmonary resuscitation pauses: a prospective cohort study. Resuscitation. 2018;122:65–8.

    Article  PubMed  Google Scholar 

  52. Berg KM. Finding a window: timing of cardiac ultrasound acquisition during cardiac arrest. Resuscitation. 2018;124:A11–2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tagalakis V, Patenaude V, Kahn SR, Suissa S. Incidence of and mortality from venous thromboembolism in a real-world population: the Q-VTE study cohort. Am J Med. 2013;126:832. e13–832.e21.

    Article  PubMed  Google Scholar 

  54. Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis. 2016;41:3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, Jenkins JS, Kline JA, Michaels AD, Thistlethwaite P, Vedantham S, White RJ, Zierler BK. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension. Circulation. 2011;123:1788–830.

    Article  PubMed  Google Scholar 

  56. Smulders YM. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc Res. 2000;48:23–33.

    Article  CAS  PubMed  Google Scholar 

  57. Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest. 2002;121:877–905.

    Article  PubMed  Google Scholar 

  58. Price S, Uddin S, Quinn T. Echocardiography in cardiac arrest. Curr Opin Crit Care. 2010;16:211–5.

    Article  PubMed  Google Scholar 

  59. Williams B, Sikorski R, Anders M, Galvagno S, Rock P, Mazzeffi M. Should we use perioperative transesophageal echocardiography more in non-cardiac surgery? J Cardiothorac Vasc Anesth. 2018;32:e71–3.

    Article  PubMed  Google Scholar 

  60. Shillcutt SK, Brakke TR, Thomas WR, Porter TR, Lisco SJ. The development of a perioperative echocardiography consult service: the nebraska experience. J Cardiothorac Vasc Anesth. 2015;29:777–84.

    Article  PubMed  Google Scholar 

  61. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70:657–62.

    Article  CAS  PubMed  Google Scholar 

  62. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.

    Article  PubMed  Google Scholar 

  63. Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Bärwolf C, Levang OW, Tornos P, Vanoverschelde J-L, Vermeer F, Boersma E, Ravaud P, Vahanian A. A prospective survey of patients with valvular heart disease in Europe: the euro heart survey on valvular heart disease. Eur Heart J. 2003;24:1231–43.

    Article  PubMed  Google Scholar 

  64. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De BM, Evangelista A, Falk V, Iung B, Lancellotti P, Pierard L, Price S, Schäfers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, et al. The joint task force on the management of valvular heart disease of the European Society of cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardio-thoracic Surg. 2012;42:S1–44.

    Google Scholar 

  65. Online STS risk calculator at http://riskcalc.sts.org/stswebriskcalc/calculate.

  66. New EuroSCORE II (2011) at http://www.euroscore.org/calc.html.

  67. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM, Thomas JD. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary. Circulation. 2014;129:2440–92.

    Article  PubMed  Google Scholar 

  68. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quiñones M. American Society of Echocardiography, European Association of Echocardiography: echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22:1–23.

    Article  PubMed  Google Scholar 

  69. Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, Badano L, Zamorano JL. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Hear J Cardiovasc Imaging. 2013;14:611–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan David Kaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaye, A.D. et al. (2021). The Role of Ultrasound in the Management of Cardiac Patients. In: Li, J., Ming-Der Chow, R., Vadivelu, N., Kaye, A.D. (eds) Ultrasound Fundamentals . Springer, Cham. https://doi.org/10.1007/978-3-030-46839-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46839-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46838-5

  • Online ISBN: 978-3-030-46839-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics