Skip to main content

Basic Pathology of Arterial and Valvular Calcification in Humans

  • Chapter
  • First Online:
Cardiovascular Calcification and Bone Mineralization

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 726 Accesses

Abstract

In this chapter we will characterize arterial wall calcification into three main types: (1) inflammatory/atherosclerotic (mostly intimal), (2) metabolic (mostly medial), and (3) genetic (mostly medial). Several overlapping mechanisms trigger all three types of calcification. The extent of coronary artery calcification as determined by computed tomography (CT) is being used to predict future cardiovascular events; nevertheless the contribution of coronary calcium in plaque instability is unclear. In pathologic studies, small microcalcification or spotty calcification identified by clinical CT is associated with rupture-prone unstable plaque, whereas advanced or sheet-like calcification is associated with stable plaque. Carotid artery has distinct geometry at bifurcation region that contributes to unique blood flow patterns, which lead to acceleration of atherosclerosis development. In contrast to the coronary vasculature, Mönckeberg’s medial calcification, generally observed in the peripheral arteries, leads to arterial stiffness and is accelerated in the presence of type 2 diabetes and end-stage renal disease. Both medium- to small-sized muscular arteries, including arterioles, could calcify without athrosclerotic process.

Valvular calcification including degenerative aortic valve and mitral annular calcification is frequently observed in the elderly population, especially in the developed countries. Clinical and pathologic studies suggest that atherosclerotic risk factors are also linked to valvular calcification as there are similarities between atherosclerotic and valvular calcification. Both congenital and acquired valvular diseases are associated with early progression of valvular calcification (e.g., bicuspid/unicuspid aortic valve, mitral valve prolapse, rheumatic heart disease), leading to poor clinical outcomes.

A deeper understanding of vascular and valvular calcification will allow for better risk stratification of patients and eventually to improvement of patient outcomes with the development of new therapies. In this chapter, we focus on the pathologic description of calcification involving human coronary and peripheral artery disease as well as aortic and mitral valvular calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson PW, D'Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47. PMID: 9603539.

    CAS  PubMed  Google Scholar 

  2. Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34(4):715–23. PMID: 24665125.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Qiao JH, Mertens RB, Fishbein MC, et al. Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Hum Pathol. 2003;34(4):402–7. PMID: 12733123.

    CAS  PubMed  Google Scholar 

  4. Ikari Y, McManus BM, Kenyon J, et al. Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol. 1999;19(9):2036–40. PMID: 10479643.

    CAS  PubMed  Google Scholar 

  5. Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation. 1994;89(5):2462–78. PMID: 8181179.

    CAS  PubMed  Google Scholar 

  6. Velican C. A dissecting view on the role of the fatty streak in the pathogenesis of human atherosclerosis: culprit or bystander? Med Interne. 1981;19(4):321–37. PMID: 7038828.

    CAS  PubMed  Google Scholar 

  7. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75. PMID: 10807742.

    CAS  PubMed  Google Scholar 

  8. Nakagawa K, Nakashima Y. Pathologic intimal thickening in human atherosclerosis is formed by extracellular accumulation of plasma-derived lipids and dispersion of intimal smooth muscle cells. Atherosclerosis. 2018;274:235–42. PMID: 29622338.

    CAS  PubMed  Google Scholar 

  9. Nakashima Y, Fujii H, Sumiyoshi S, et al. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol. 2007;27(5):1159–65. PMID: 17303781.

    CAS  PubMed  Google Scholar 

  10. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79(1):14–23. PMID: 18430750.

    CAS  PubMed  Google Scholar 

  11. Yahagi K, Kolodgie FD, Otsuka F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;13(2):79–98. PMID: 26503410.

    CAS  PubMed  Google Scholar 

  12. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15(9):1512–31. PMID: 7670967.

    CAS  PubMed  Google Scholar 

  13. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336(18):1276–82. PMID: 9113930.

    CAS  PubMed  Google Scholar 

  14. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72. PMID: 22421299.

    PubMed  Google Scholar 

  15. Kolodgie FD, Burke AP, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16(5):285–92. PMID: 11584167.

    CAS  PubMed  Google Scholar 

  16. Falk E, Nakano M, Bentzon JF, et al. Update on acute coronary syndromes: the pathologists' view. Eur Heart J. 2013;34(10):719–28. PMID: 23242196.

    CAS  PubMed  Google Scholar 

  17. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 1995;147(2):251–66. PMID: 7639325.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Burke AP, Farb A, Malcom GT, et al. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281(10):921–6. PMID: 10078489.

    CAS  PubMed  Google Scholar 

  19. Gijsen FJ, Wentzel JJ, Thury A, et al. Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol. 2008;295(4):H1608–14. PMID: 18621851.

    CAS  PubMed  Google Scholar 

  20. Sukhova GK, Schonbeck U, Rabkin E, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation. 1999;99(19):2503–9. PMID: 10330380.

    CAS  PubMed  Google Scholar 

  21. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006;103(40):14678–83. PMID: 17003118.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93(7):1354–63. PMID: 8641024.

    CAS  PubMed  Google Scholar 

  23. Kolodgie FD, Burke AP, Farb A, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22(10):1642–8. PMID: 12377743.

    CAS  PubMed  Google Scholar 

  24. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82(3):265–8. PMID: 10455072.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–40. PMID: 11181466.

    CAS  PubMed  Google Scholar 

  26. Kragel AH, Reddy SG, Wittes JT, et al. Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation. 1989;80(6):1747–56. PMID: 2598434.

    CAS  PubMed  Google Scholar 

  27. Mori H, Torii S, Kutyna M, et al. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018;11(1):127–42. PMID: 29301708.

    PubMed  Google Scholar 

  28. Otsuka F, Sakakura K, Yahagi K, et al. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36. PMID: 24558104.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kockx MM, De Meyer GR, Muhring J, et al. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998;97(23):2307–15. PMID: 9639374.

    CAS  PubMed  Google Scholar 

  30. Kelly-Arnold A, Maldonado N, Laudier D, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013;110(26):10741–6. PMID: 23733926.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kapustin AN, Shanahan CM. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc Med. 2012;22(5):133–7. PMID: 22902179.

    CAS  PubMed  Google Scholar 

  32. Tanimura A, McGregor DH, Anderson HC. Calcification in atherosclerosis. I Human Stud J Exp Pathol. 1986;2(4):261–73. PMID: 2946818.

    CAS  Google Scholar 

  33. Bertazzo S, Gentleman E, Cloyd KL, et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat Mater. 2013;12(6):576–83. PMID: 23603848.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hutcheson JD, Goettsch C, Bertazzo S, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15(3):335–43. PMID: 26752654.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Otsuka F, Kramer MC, Woudstra P, et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study. Atherosclerosis. 2015;241(2):772–82. PMID: 26058741.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. New SE, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113(1):72–7. PMID: 23616621.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Burke AP, Weber DK, Kolodgie FD, et al. Pathophysiology of calcium deposition in coronary arteries. Herz. 2001;26(4):239–44. PMID: 11479935.

    CAS  PubMed  Google Scholar 

  38. Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61(10):1041–51. PMID: 23473409.

    PubMed  PubMed Central  Google Scholar 

  39. Huang H, Virmani R, Younis H, et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103(8):1051–6. PMID: 11222465.

    CAS  PubMed  Google Scholar 

  40. Rajamannan NM, Evans FJ, Aikawa E, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124(16):1783–91. PMID: 22007101.

    PubMed  PubMed Central  Google Scholar 

  41. Yutzey KE, Demer LL, Body SC, et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol. 2014;34(11):2387–93. PMID: 25189570.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010;7(9):528–36. PMID: 20664518.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Panh L, Lairez O, Ruidavets JB, et al. Coronary artery calcification: from crystal to plaque rupture. Arch Cardiovasc Dis. 2017;110(10):550–61. PMID: 28735837.

    PubMed  Google Scholar 

  44. Soor GS, Vukin I, Leong SW, et al. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology. 2008;40(4):385–91. PMID: 18446629.

    PubMed  Google Scholar 

  45. Torii S, Mustapha JA, Narula J, et al. Histopathologic characterization of peripheral arteries in subjects with abundant risk factors: correlating imaging with pathology. JACC Cardiovasc Imaging. 2018;6. PMID: 30553660.

    Google Scholar 

  46. Bui QM, Daniels LB. A review of the role of breast arterial calcification for cardiovascular risk stratification in women. Circulation. 2019;139(8):1094–101. PMID: 30779650.

    PubMed  Google Scholar 

  47. Lachman AS, Spray TL, Kerwin DM, et al. Medial calcinosis of Monckeberg. A review of the problem and a description of a patient with involvement of peripheral, visceral and coronary arteries. Am J Med. 1977;63(4):615–22. PMID: 910809.

    CAS  PubMed  Google Scholar 

  48. Amos RS, Wright V. Monckeberg's arteriosclerosis and metabolic bone disease. Lancet. 1980;2(8188):248–9. PMID: 6105406.

    CAS  PubMed  Google Scholar 

  49. Kamenskiy A, Poulson W, Sim S, et al. Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Arterioscler Thromb Vasc Biol. 2018;38(4):e48–57. PMID: 29371245.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sawabe M, Arai T, Kasahara I, et al. Sustained progression and loss of the gender-related difference in atherosclerosis in the very old: a pathological study of 1074 consecutive autopsy cases. Atherosclerosis. 2006;186(2):374–9. PMID: 16129442.

    CAS  PubMed  Google Scholar 

  51. Dalager S, Paaske WP, Kristensen IB, et al. Artery-related differences in atherosclerosis expression: implications for atherogenesis and dynamics in intima-media thickness. Stroke. 2007;38(10):2698–705. PMID: 17761918.

    PubMed  Google Scholar 

  52. Herisson F, Heymann MF, Chetiveaux M, et al. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis. 2011;216(2):348–54. PMID: 21367420.

    CAS  PubMed  Google Scholar 

  53. Diehm N, Silvestro A, Baumgartner I, et al. Chronic critical limb ischemia: European experiences. J Cardiovasc Surg. 2009;50(5):647–53. PMID: 19741580.

    CAS  Google Scholar 

  54. Narula N, Dannenberg AJ, Olin JW, et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J Am Coll Cardiol. 2018;72(18):2152–63. PMID: 30166084.

    CAS  PubMed  Google Scholar 

  55. Torii S, Mustapha JA, Narula J, et al. Histopathologic characterization of peripheral arteries in subjects with abundant risk factors: correlating imaging with pathology. JACC Cardiovasc Imaging. 2019;12(8 Pt 1):1501–13. PMID: 30553660.

    PubMed  Google Scholar 

  56. Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res. 1983;53(4):502–14. PMID: 6627609.

    CAS  PubMed  Google Scholar 

  57. Nakazawa G, Yazdani SK, Finn AV, et al. Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol. 2010;55(16):1679–87. PMID: 20394871.

    PubMed  Google Scholar 

  58. Mauriello A, Sangiorgi G, Virmani R, et al. Evidence of a topographical link between unstable carotid plaques and luminal stenosis: can we better stratify asymptomatic patients with significant plaque burden? Int J Cardiol. 2012;155(2):309–11. PMID: 22192293.

    PubMed  Google Scholar 

  59. Mauriello A, Sangiorgi GM, Virmani R, et al. A pathobiologic link between risk factors profile and morphological markers of carotid instability. Atherosclerosis. 2010;208(2):572–80. PMID: 19683236.

    CAS  PubMed  Google Scholar 

  60. Bischetti S, Scimeca M, Bonanno E, et al. Carotid plaque instability is not related to quantity but to elemental composition of calcification. Nutr Metab Cardiovasc Dis. 2017;27(9):768–74. PMID: 28739184.

    CAS  PubMed  Google Scholar 

  61. Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2017;37(2):191–204. PMID: 27908890.

    CAS  PubMed  Google Scholar 

  62. Sahasakul Y, Edwards WD, Naessens JM, et al. Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am J Cardiol. 1988;62(7):424–30. PMID: 3414519.

    CAS  PubMed  Google Scholar 

  63. Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11. PMID: 16980116.

    PubMed  Google Scholar 

  64. Gomez-Stallons MV, Tretter JT, Hassel K, et al. Calcification and extracellular matrix dysregulation in human postmortem and surgical aortic valves. Heart. 2019;105(21):1616–21. PMID: 31171628.

    CAS  PubMed  Google Scholar 

  65. Rajamannan NM, Subramaniam M, Rickard D, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107(17):2181–4. PMID: 12719282.

    PubMed  PubMed Central  Google Scholar 

  66. Yip CY, Simmons CA. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol. 2011;20(3):177–82. PMID: 21256052.

    PubMed  Google Scholar 

  67. Simmons CA, Grant GR, Manduchi E, et al. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 2005;96(7):792–9. PMID: 15761200.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Butany J, Collins MJ, Demellawy DE, et al. Morphological and clinical findings in 247 surgically excised native aortic valves. Can J Cardiol. 2005;21(9):747–55. PMID: 16082434.

    PubMed  Google Scholar 

  69. Roberts WC, Ko JM. Weights of individual cusps in operatively-excised stenotic three-cuspid aortic valves. Am J Cardiol. 2004;94(5):681–4. PMID: 15342312.

    PubMed  Google Scholar 

  70. Owens DS, Katz R, Takasu J, et al. Incidence and progression of aortic valve calcium in the Multi-ethnic Study of Atherosclerosis (MESA). Am J Cardiol. 2010;105(5):701–8. PMID: 20185020.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fedak PW, Verma S, David TE, et al. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4. PMID: 12186790.

    PubMed  Google Scholar 

  72. Novaro GM, Mishra M, Griffin BP. Incidence and echocardiographic features of congenital unicuspid aortic valve in an adult population. J Heart Valve Dis. 2003;12(6):674–8. PMID: 14658804.

    PubMed  Google Scholar 

  73. Yotsumoto G, Iguro Y, Kinjo T, et al. Congenital quadricuspid aortic valve: report of nine surgical cases. Ann Thorac Cardiovasc Surg. 2003;9(2):134–7. PMID: 12732093.

    PubMed  Google Scholar 

  74. Yener N, Oktar GL, Erer D, et al. Bicuspid aortic valve. Ann Thorac Cardiovasc Surg. 2002;8(5):264–7. PMID: 12472407.

    PubMed  Google Scholar 

  75. Robicsek F, Thubrikar MJ, Cook JW, et al. The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann Thorac Surg. 2004;77(1):177–85. PMID: 14726058.

    PubMed  Google Scholar 

  76. Collins MJ, Butany J, Borger MA, et al. Implications of a congenitally abnormal valve: a study of 1025 consecutively excised aortic valves. J Clin Pathol. 2008;61(4):530–6. PMID: 17965218.

    CAS  PubMed  Google Scholar 

  77. Roberts WC. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol. 1970;26(1):72–83. PMID: 5427836.

    CAS  PubMed  Google Scholar 

  78. Roberts WC. Morphologic aspects of cardiac valve dysfunction. Am Heart J. 1992;123(6):1610–32. PMID: 1595543.

    CAS  PubMed  Google Scholar 

  79. Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226–33. PMID: 17467434.

    PubMed  Google Scholar 

  80. Falcone MW, Roberts WC, Morrow AG, et al. Congenital aortic stenosis resulting from a unicommisssural valve. Clinical and anatomic features in twenty-one adult patients. Circulation. 1971;44(2):272–80. PMID: 5562562.

    CAS  PubMed  Google Scholar 

  81. Edwards JE. Pathology of left ventricular outflow tract obstruction. Circulation. 1965;31:586–99. PMID: 14275999.

    CAS  PubMed  Google Scholar 

  82. McKay R, Smith A, Leung MP, et al. Morphology of the ventriculoaortic junction in critical aortic stenosis. Implications for hemodynamic function and clinical management. J Thorac Cardiovasc Surg. 1992;104(2):434–42. PMID: 1495307.

    CAS  PubMed  Google Scholar 

  83. Isner JM, Chokshi SK, DeFranco A, et al. Contrasting histoarchitecture of calcified leaflets from stenotic bicuspid versus stenotic tricuspid aortic valves. J Am Coll Cardiol. 1990;15(5):1104–8. PMID: 2312966.

    CAS  PubMed  Google Scholar 

  84. Ho SY. Anatomy of the mitral valve. Heart. 2002;88 Suppl 4:iv5–10. PMID: 12369589.

    CAS  PubMed  Google Scholar 

  85. Silbiger JJ. Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J. 2012;164(2):163–76. PMID: 22877801.

    PubMed  Google Scholar 

  86. Lam JH, Ranganathan N, Wigle ED, et al. Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation. 1970;41(3):449–58. PMID: 5415982.

    CAS  PubMed  Google Scholar 

  87. Adler Y, Fink N, Spector D, et al. Mitral annulus calcification – a window to diffuse atherosclerosis of the vascular system. Atherosclerosis. 2001;155(1):1–8. PMID: 11223420.

    CAS  PubMed  Google Scholar 

  88. Roberts WC, Shirani J. Comparison of cardiac findings at necropsy in octogenarians, nonagenarians, and centenarians. Am J Cardiol. 1998;82(5):627–31. PMID: 9732892.

    CAS  PubMed  Google Scholar 

  89. Abramowitz Y, Jilaihawi H, Chakravarty T, et al. Mitral annulus calcification. J Am Coll Cardiol. 2015;66(17):1934–41. PMID: 26493666.

    PubMed  Google Scholar 

  90. Barasch E, Gottdiener JS, Larsen EK, et al. Clinical significance of calcification of the fibrous skeleton of the heart and aortosclerosis in community dwelling elderly. The Cardiovascular Health Study (CHS). Am Heart J. 2006;151(1):39–47. PMID: 16368289.

    PubMed  Google Scholar 

  91. Tyagi G, Dang P, Pasca I, et al. Progression of degenerative mitral stenosis: insights from a cohort of 254 patients. J Heart Valve Dis. 2014;23(6):707–12. PMID: 25790617.

    PubMed  Google Scholar 

  92. Aronow WS, Kronzon I. Correlation of prevalence and severity of mitral regurgitation and mitral stenosis determined by Doppler echocardiography with physical signs of mitral regurgitation and mitral stenosis in 100 patients aged 62 to 100 years with mitral annular calcium. Am J Cardiol. 1987;60(14):1189–90. PMID: 3687754.

    CAS  PubMed  Google Scholar 

  93. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24(13):1231–43. PMID: 12831818.

    PubMed  Google Scholar 

  94. Nestico PF, Depace NL, Morganroth J, et al. Mitral annular calcification: clinical, pathophysiology, and echocardiographic review. Am Heart J. 1984;107(5 Pt 1):989–96. PMID: 6372421.

    CAS  PubMed  Google Scholar 

  95. Fulkerson PK, Beaver BM, Auseon JC, et al. Calcification of the mitral annulus: etiology, clinical associations, complications and therapy. Am J Med. 1979;66(6):967–77. PMID: 156499.

    CAS  PubMed  Google Scholar 

  96. Takamoto T, Popp RL. Conduction disturbances related to the site and severity of mitral annular calcification: a 2-dimensional echocardiographic and electrocardiographic correlative study. Am J Cardiol. 1983;51(10):1644–9. PMID: 6858870.

    CAS  PubMed  Google Scholar 

  97. Carpentier AF, Pellerin M, Fuzellier JF, et al. Extensive calcification of the mitral valve anulus: pathology and surgical management. J Thorac Cardiovasc Surg. 1996;111(4):718–29; discussion 729–30. PMID: 8614132.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Virmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakamoto, A., Sato, Y., Finn, A.V., Virmani, R. (2020). Basic Pathology of Arterial and Valvular Calcification in Humans. In: Aikawa, E., Hutcheson, J. (eds) Cardiovascular Calcification and Bone Mineralization. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-46725-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46725-8_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-46724-1

  • Online ISBN: 978-3-030-46725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics