Skip to main content

Heterotopic Ossification Following Traumatic Blast Injury

  • Chapter
  • First Online:
Cardiovascular Calcification and Bone Mineralization

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The incidence of blast injuries is increasing, in both the civilian and combat settings. Heterotopic ossification (HO), the aberrant growth of bone outside of the skeleton, is a common complication as a consequence of these injuries. HO can cause chronic pain and skin ulceration and prevent prosthetic limb fitting, significantly delaying rehabilitation in these patients. Current preventions, which were developed for HO formed following hip surgery, show inconsistent efficacy and side effects that make them intolerable for patients with high-energy injuries. This leaves surgical excision as the only available treatment. The biological processes behind HO are complex, with several cell types able to differentiate down HO tissue lineages, and it is likely that several pathways exist concurrently. However, as the biological mechanisms are becoming clearer, new targets are being identified and novel drugs developed for HO prophylaxis. The goal of these advances is to provide new therapies to prevent HO and improve the quality of life for blast-injured patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHO:

Albright hereditary osteodystrophy

ALK:

Activin receptor-like kinase

ALP:

Alkaline phosphatase

ATP:

Adenosine triphosphate

BMP:

Bone morphogenetic protein

BNB:

Blood-nerve barrier

cAMP:

Cyclic adenosine monophosphate

CGRP:

Calcitonin gene-related peptide

CNS:

Central nervous system

COX:

Cyclooxygenase

CT:

Computed tomography

FDA:

Food and Drug Administration

FOP:

Fibrodysplasia ossificans progressiva

HIF:

Hypoxia-inducible transcription factor

HO:

Heterotopic ossification

IED:

Improvised explosive device

IGF:

Insulin-like growth factor

IL:

Interleukin

IP:

Interferon gamma-induced protein

MCP:

Monocyte chemoattractant protein

MIP:

Macrophage inflammatory protein

MMP:

Matrix metalloprotein

MRSA:

Methicillin-resistant Staphylococcus aureus

MSC:

Mesenchymal stem cell

NSAID:

Non-steroidal anti-inflammatory drug

POH:

Progressive osseous heteroplasia

RAR:

Retinoic acid receptor

SCI:

Spinal cord injury

SP:

Substance P

TBI:

Traumatic brain injury

TGF:

Transforming growth factor

TNF:

Tumour necrosis factor

VEGF:

Vascular endothelial growth factor

References

  1. Jorolemon MR, Krywko DM. Blast injuries: StatPearls Publishing; Treasure Island, Florida, USA; 2019.

    Google Scholar 

  2. Clemedson C-J. Blast Injury. Physiol Rev. 1956;36:336–54.

    CAS  PubMed  Google Scholar 

  3. Meyers S, Shanley ES. Industrial explosives – a brief history of their development and use. J Hazard Mater. 1990;23:183–201.

    CAS  Google Scholar 

  4. Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: emphasizing bioremediation. Chemosphere. 2017;184:438–51.

    CAS  PubMed  Google Scholar 

  5. Kulla M, Maier J, Bieler D, Lefering R, Hentsch S, Lampl L, Helm M. Zivile Explosionstraumata – ein unterschätztes Problem? Unfallchirurg. 2016;119:843–53.

    CAS  PubMed  Google Scholar 

  6. Wolf SJ, Bebarta VS, Bonnett CJ, Pons PT, Cantrill SV. Blast injuries. Lancet. 2009;374:405–15.

    PubMed  Google Scholar 

  7. Hoencamp R, Vermetten E, Tan ECTH, Putter H, Leenen LPH, Hamming JF. Systematic review of the prevalence and characteristics of battle casualties from NATO coalition forces in Iraq and Afghanistan. Injury. 2014;45:1028–34.

    PubMed  Google Scholar 

  8. Penn-Barwell JG, Roberts SAG, Midwinter MJ, Bishop JRB. Improved survival in UK combat casualties from Iraq and Afghanistan: 2003-2012. J Trauma Acute Care Surg. 2015;78:1014–20.

    PubMed  Google Scholar 

  9. Owens BD, Kragh JF, Wenke JC, Macaitis J, Wade CE, Holcomb JB. Combat wounds in operation Iraqi freedom and operation enduring freedom. J Trauma Inj Infect Crit Care. 2008;64:295–9.

    Google Scholar 

  10. Schoenfeld AJ, Belmont PJ. Traumatic Combat Injuries. In: Musculoskelet. New York: Inj. Mil. Springer New York; 2016. p. 11–23.

    Google Scholar 

  11. Wilson C . Improvised explosive devices (IEDs) in Iraq and Afganistan: effects and countermeasures. CRS Rep Congr. 2007; 1–6.

    Google Scholar 

  12. Ramasamy A, Hill AM, Clasper JC. Improvised explosive devices: pathophysiology, injury profiles and current medical management. J R Army Med Corps. 2009;155:265–72.

    CAS  PubMed  Google Scholar 

  13. Isaacson BM, Brown AA, Brunker LB, Higgins TF, Bloebaum RD. Clarifying the structure and bone mineral content of heterotopic ossification. J Surg Res. 2011;167:e163–70.

    PubMed  Google Scholar 

  14. Isaacson BM, Potter BK, Bloebaum RD, Epperson RT, Kawaguchi BS, Swanson TM, Pasquina PF. Link between clinical predictors of heterotopic ossification and histological analysis in combat-injured service members. J Bone Jt Surg. 2016;98:647–57.

    CAS  Google Scholar 

  15. Al-Zahrāwī A Abū al-Qāsim Khalaf ibn, Spink M, Lewis G. Albucasis on surgery and instruments. A definitive edition of the Arabic text with English translation and commentary by M. S. Spink and G. L. Lewis. 1973.

    Google Scholar 

  16. Zaman SR. Heterotopic ossification of the elbows in a major petrol burn. Case Rep. 2012;2012:bcr0320126027.

    Google Scholar 

  17. Kaplan FS, Glaser DL, Pignolo RJ, Goldsby RE, Kitterman JA, Groppe J, Shore EM. Fibrodysplasia ossificans progressiva. Best Pract Res Clin Rheumatol. 2008;22:191–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaplan FS, Shore EM. Progressive osseous heteroplasia. J Bone Miner Res. 2000;15:2084–94.

    CAS  PubMed  Google Scholar 

  19. Pignolo RJ, Shore EM, Kaplan FS. Fibrodysplasia ossificans progressiva: clinical and genetic aspects. Orphanet J Rare Dis. 2011;6:80.

    PubMed  PubMed Central  Google Scholar 

  20. Brady RD, Shultz SR, McDonald SJ, O’Brien TJ. Neurological heterotopic ossification: current understanding and future directions. Bone. 2018;109:35–42.

    PubMed  Google Scholar 

  21. Hoyt BW, Pavey GJ, Potter BK, Forsberg JA. Heterotopic ossification and lessons learned from fifteen years at war: a review of therapy, novel research, and future directions for military and civilian orthopaedic trauma. Bone. 2018;109:3–11.

    PubMed  Google Scholar 

  22. Dejerne A, Ceillier A. Para-osteo-arthropathies des paraplegiques par lesion medullaire; etude clinique et radiographique. Ann Med. 1918;5:497.

    Google Scholar 

  23. Eskridge SL, Macera CA, Galarneau MR, Holbrook TL, Woodruff SI, MacGregor AJ, Morton DJ, Shaffer RA. Injuries from combat explosions in Iraq: injury type, location, and severity. Injury. 2012;43:1678–82.

    PubMed  Google Scholar 

  24. Kragh JF, Littrel ML, Jones JA, Walters TJ, Baer DG, Wade CE, Holcomb JB. Battle casualty survival with emergency tourniquet use to stop limb bleeding. J Emerg Med. 2011;41:590–7.

    PubMed  Google Scholar 

  25. Mabry RL, Apodaca A, Penrod J, Orman JA, Gerhardt RT, Dorlac WC. Impact of critical care-trained flight paramedics on casualty survival during helicopter evacuation in the current war in Afghanistan. J Trauma Acute Care Surg. 2012;73:S32–7.

    PubMed  Google Scholar 

  26. Bennett BL, Littlejohn L. Review of new topical hemostatic dressings for combat casualty care. Mil Med. 2014;179:497–514.

    PubMed  Google Scholar 

  27. Dougherty PJ, McFarland LV, Smith DG, Esquenazi A, Blake DJ, Reiber GE. Multiple traumatic limb loss: a comparison of Vietnam veterans to OIF/OEF service members. J Rehabil Res Dev. 2010;47:333.

    PubMed  Google Scholar 

  28. Daniels CM, Pavey GJ, Arthur J, Noller M, Forsberg JA, Potter BK. Has the proportion of combat-related amputations that develop heterotopic ossification increased? J Orthop Trauma. 2018;32:283–7.

    PubMed  Google Scholar 

  29. Potter BK, Burns TC, Lacap AP, Granville RR, Gajewski DA. Heterotopic ossification following traumatic and combat-related amputations: prevalence, risk factors, and preliminary results of excision. J Bone Jt Surg Ser A. 2007;89:476–86.

    Google Scholar 

  30. Forsberg JA, Pepek JM, Wagner S, Wilson K, Flint J, Andersen RC, Tadaki D, Gage FA, Stojadinovic A, Elster EA. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J Bone Jt Surg. 2009;91:1084–91.

    Google Scholar 

  31. Alfieri KA, Forsberg JA, Potter BK. Blast injuries and heterotopic ossification. Bone Joint Res. 2012;1:192–7.

    CAS  PubMed  Google Scholar 

  32. Matsumoto ME, Khan M, Jayabalan P, Ziebarth J, Munin MC. Heterotopic ossification in civilians with lower limb amputations. Arch Phys Med Rehabil. 2014;95:1710–3.

    PubMed  Google Scholar 

  33. Kaplan FS, Glaser DL, Hebela N, Shore EM. Heterotopic ossification. J Am Acad Orthop Surg. 2004;12:116–25.

    PubMed  Google Scholar 

  34. Davies OG, Grover LM, Eisenstein N, Lewis MP, Liu Y. Identifying the cellular mechanisms leading to heterotopic ossification. Calcif Tissue Int. 2015;97:432–44.

    CAS  PubMed  Google Scholar 

  35. Matsuo K, Chavez RD, Barruet E, Hsiao EC. Inflammation in fibrodysplasia ossificans progressiva and other forms of heterotopic ossification. Curr Osteoporos Rep. 2019. https://doi.org/10.1007/s11914-019-00541-x.

  36. Vanzant EL, Lopez CM, Ozrazgat-Baslanti T, et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg. 2014;76:21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans KN, Forsberg JA, Potter BK, Hawksworth JS, Brown TS, Andersen R, Dunne JR, Tadaki D, Elster EA. Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. J Orthop Trauma. 2012;26:e204–13.

    PubMed  Google Scholar 

  38. Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res. 2014;472:2845–54.

    PubMed  PubMed Central  Google Scholar 

  39. Merceron C, Ranganathan K, Wang E, et al. Hypoxia-inducible factor 2α is a negative regulator of osteoblastogenesis and bone mass accrual. Bone Res. 2019;7:7.

    PubMed  PubMed Central  Google Scholar 

  40. Araldi E, Schipani E. Hypoxia, HIFs and bone development. Bone. 2010;47:190–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Davis TA, O’Brien FP, Anam K, Grijalva S, Potter BK, Elster EA. Heterotopic ossification in complex orthopaedic combat wounds: quantification and characterization of osteogenic precursor cell activity in traumatized muscle. J Bone Jt Surg Ser A. 2011;93:1122–31.

    Google Scholar 

  42. Isaacson B, Swanson T, Potter K, Pasquina P. Tourniquet use in combat-injured service members: a link with heterotopic ossification? Orthop Res Rev. 2014;6:27.

    Google Scholar 

  43. Downey J, Lauzier D, Kloen P, Klarskov K, Richter M, Hamdy R, Faucheux N, Scimè A, Balg F, Grenier G. Prospective heterotopic ossification progenitors in adult human skeletal muscle. Bone. 2015;71:164–70.

    CAS  PubMed  Google Scholar 

  44. Scotti C, Tonnarelli B, Papadimitropoulos A, Scherberich A, Schaeren S, Schauerte A, Lopez-Rios J, Zeller R, Barbero A, Martin I. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci U S A. 2010;107:7251–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nesti LJ, Jackson WM, Shanti RM, Koehler SM, Aragon AB, Bailey JR, Sracic MK, Freedman BA, Giuliani JR, Tuan RS. Differentiation potential of multipotent progenitor cells derived from war-traumatized muscle tissue. J Bone Jt Surg. 2008;90:2390–8.

    Google Scholar 

  46. Jackson WM, Aragon AB, Bulken-Hoover JD, Nesti LJ, Tuan RS. Putative heterotopic ossification progenitor cells derived from traumatized muscle. J Orthop Res. 2009;27:1645–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Asumda FZ, Chase PB. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC cell biology. 2011;12:44. https://doi.org/10.1186/1471-2121-12-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Efimenko A, Dzhoyashvili N, Kalinina N, Kochegura T, Akchurin R, Tkachuk V, Parfyonova Y. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential. Stem Cells Transl Med. 2014;3:32–41.

    CAS  PubMed  Google Scholar 

  49. Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int. 2013;37:551–60.

    CAS  PubMed  Google Scholar 

  50. Mu X, Li Y. Conditional TGF-β1 treatment increases stem cell-like cell population in myoblasts. J Cell Mol Med. 2011;15:679–90.

    CAS  PubMed  Google Scholar 

  51. Bosch P, Musgrave DS, Lee JY, Cummins J, Shuler F, Ghivizzani SC, Evans C, Robbins PD, Huard J. Osteoprogenitor cells within skeletal muscle. J Orthop Res. 2000;18:933–44.

    CAS  PubMed  Google Scholar 

  52. Gao X, Usas A, Tang Y, et al. A comparison of bone regeneration with human mesenchymal stem cells and muscle-derived stem cells and the critical role of BMP. Biomaterials. 2014;35:6859–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Asakura A, Rudnicki MA, Komaki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 2001;68:245–53.

    CAS  PubMed  Google Scholar 

  54. Hashimoto N, Kiyono T, Wada MR, Umeda R, Goto Y, Nonaka I, Shimizu S, Yasumoto S, Inagawa-Ogashiwa M. Osteogenic properties of human myogenic progenitor cells. Mech Dev. 2008;125:257–69.

    CAS  PubMed  Google Scholar 

  55. Starkey JD, Yamamoto M, Yamamoto S, Goldhamer DJ. Skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt nonmyogenic fates. J Histochem Cytochem. 2011;59:33–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lounev VY, Ramachandran R, Wosczyna MN, Yamamoto M, Maidment ADA, Shore EM, Glaser DL, Goldhamer DJ, Kaplan FS. Identification of progenitor cells that contribute to heterotopic skeletogenesis. J Bone Joint Surg Am. 2009;91:652–63.

    PubMed  PubMed Central  Google Scholar 

  57. Lazard ZW, Olmsted-Davis EA, Salisbury EA, Gugala Z, Sonnet C, Davis EL, Beal E, Ubogu EE, Davis AR. Osteoblasts have a neural origin in heterotopic ossification. Clin Orthop Relat Res. 2015;473:2790–806.

    PubMed  PubMed Central  Google Scholar 

  58. Davis EL, Davis AR, Gugala Z, Olmsted-Davis EA. Is heterotopic ossification getting nervous?: the role of the peripheral nervous system in heterotopic ossification. Bone. 2018;109:22–7.

    PubMed  Google Scholar 

  59. Gugala Z, Olmsted-Davis EA, Xiong Y, Davis EL, Davis AR. Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front Neurol. 2018;9:408.

    PubMed  PubMed Central  Google Scholar 

  60. Kan L, Lounev VY, Pignolo RJ, et al. Substance P signaling mediates BMP-dependent heterotopic ossification. J Cell Biochem. 2011;112:2759–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 1995;154:8–20.

    CAS  Google Scholar 

  62. Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Maroulakou IG, Shibata M-A, Anver M, et al. Heterotopic endochondrial ossification with mixed tumor formation in C3(1)/Tag transgenic mice is associated with elevated TGF-beta1 and BMP-2 expression. Oncogene. 1999;18:5435–47.

    CAS  PubMed  Google Scholar 

  64. van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347:177–86.

    PubMed  Google Scholar 

  65. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tran K-V, Gealekman O, Frontini A, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012;15:222–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rutherford RB, Racenis P, Fatherazi S, Izutsu K. Bone formation by BMP-7-transduced human gingival keratinocytes. J Dent Res. 2003;82:293–7.

    CAS  PubMed  Google Scholar 

  68. Bittner K, Vischer P, Bartholmes P, Bruckner P. Role of the subchondral vascular system in endochondral ossification: endothelial cells specifically derepress late differentiation in resting chondrocytesin vitro. Exp Cell Res. 1998;238:491–7.

    CAS  PubMed  Google Scholar 

  69. Jeong B-C, Kim H-J, Bae I-H, et al. COMP-Ang1, a chimeric form of Angiopoietin 1, enhances BMP2-induced osteoblast differentiation and bone formation. Bone. 2010;46:479–86.

    CAS  PubMed  Google Scholar 

  70. Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res. 1998;13:828–38.

    CAS  PubMed  Google Scholar 

  71. Crisan M, Corselli M, Chen C-W, Péault B. Multilineage stem cells in the adult: a perivascular legacy? Organogenesis. 2011;7:101–4.

    PubMed  PubMed Central  Google Scholar 

  72. Vanden Bossche L, Vanderstraeten G. Heterotopic ossification: a review. J Rehabil. 2005;37:129–36.

    Google Scholar 

  73. Richards JT, Overmann A, Forsberg JA, Potter BK. Complications of combat blast injuries and wounds. Curr Trauma Reports. 2018;4:348–58.

    Google Scholar 

  74. Shehab D, Elgazzar AH, Collier BD. Heterotopic ossification. J Nucl Med. 2002;43:346–53.

    PubMed  Google Scholar 

  75. Hsu J, Keenan M. Current review of heterotopic ossification. Univ Pennsylvania Orthop J. 2010;20:126–30.

    Google Scholar 

  76. Citak M, Grasmücke D, Suero EM, Cruciger O, Meindl R, Schildhauer TA, Aach M. The roles of serum alkaline and bone alkaline phosphatase levels in predicting heterotopic ossification following spinal cord injury. Spinal Cord. 2016;54:368–70.

    CAS  PubMed  Google Scholar 

  77. Ranganathan K, Hong X, Cholok D, et al. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model. Bone. 2018;109:49–55.

    PubMed  PubMed Central  Google Scholar 

  78. Perosky JE, Peterson JR, Eboda ON, Morris MD, Wang SC, Levi B, Kozloff KM. Early detection of heterotopic ossification using near-infrared optical imaging reveals dynamic turnover and progression of mineralization following Achilles tenotomy and burn injury. J Orthop Res. 2014;32:1416–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Peterson JR, Okagbare PI, De La Rosa S, et al. Early detection of burn induced heterotopic ossification using transcutaneous Raman spectroscopy. Bone. 2013;54:28–34.

    PubMed  PubMed Central  Google Scholar 

  80. Rosteius T, Suero EM, Grasmücke D, Aach M, Gisevius A, Ohlmeier M, Meindl R, Schildhauer TA, Citak M. The sensitivity of ultrasound screening examination in detecting heterotopic ossification following spinal cord injury. Spinal Cord. 2017;55:71–3.

    CAS  PubMed  Google Scholar 

  81. Crane NJ, Polfer E, Elster EA, Potter BK, Forsberg JA. Raman spectroscopic analysis of combat-related heterotopic ossification development. Bone. 2013;57:335–42.

    CAS  PubMed  Google Scholar 

  82. Russell RGG. Bisphosphonates: the first 40 years. Bone. 2011;49:2–19.

    CAS  PubMed  Google Scholar 

  83. Shafer DM, Bay C, Caruso DM, Foster KN. The use of etidronate disodium in the prevention of heterotopic ossification in burn patients. Burns. 2008;34:355–60.

    PubMed  Google Scholar 

  84. Haran MJ, Bhuta T, Lee BSB. Pharmacological interventions for treating acute heterotopic ossification. Cochrane Database Syst Rev. 2004; https://doi.org/10.1002/14651858.cd003321.pub4.

  85. Yue B, Ng A, Tang H, Joseph S, Richardson M. Delayed healing of lower limb fractures with bisphosphonate therapy. Ann R Coll Surg Engl. 2015;97:333–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kates SL, Ackert-Bicknell CL. How do bisphosphonates affect fracture healing? Injury. 2016;47:S65–8.

    PubMed  PubMed Central  Google Scholar 

  87. Sinha S, Biernaskie JA, Nickerson D, Gabriel VA. Nitrogen-containing bisphosphonates for burn-related heterotopic ossification. Burn Open. 2018;2:160–3.

    Google Scholar 

  88. Liu H, Zhao J-G, Li Y, Xia J, Zhao S. Non-steroidal anti-inflammatory drugs for preventing heterotopic bone formation after hip arthroplasty. Cochrane Database Syst Rev. 2017; https://doi.org/10.1002/14651858.CD012861.

  89. Chang J-K, Li C-J, Liao H-J, Wang C-K, Wang G-J, Ho M-L. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts. Toxicology. 2009;258:148–56.

    CAS  PubMed  Google Scholar 

  90. Kurz AZ, LeRoux E, Riediger M, Coughlin R, Simunovic N, Duong A, Laskovski JR, Ayeni OR. Heterotopic ossification in hip arthroscopy: an updated review. Curr Rev Musculoskelet Med. 2019;12:147–55.

    PubMed  PubMed Central  Google Scholar 

  91. Karunakar MA, Sen A, Bosse MJ, Sims SH, Goulet JA, Kellam JF. Indometacin as prophylaxis for heterotopic ossification after the operative treatment of fractures of the acetabulum. J Bone Joint Surg Br. 2006;88–B:1613–7.

    Google Scholar 

  92. Beckmann JT, Wylie JD, Kapron AL, Hanson JA, Maak TG, Aoki SK. The effect of NSAID prophylaxis and operative variables on heterotopic ossification after hip arthroscopy. Am J Sports Med. 2014;42:1359–64.

    PubMed  Google Scholar 

  93. Kan S-L, Yang B, Ning G-Z, Chen L-X, Li Y-L, Gao S-J, Chen X-Y, Sun J-C, Feng S-Q. Nonsteroidal anti-inflammatory drugs as prophylaxis for heterotopic ossification after total hip arthroplasty: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94:e828.

    Google Scholar 

  94. Bozimowski G. A review of nonsteroidal anti-inflammatory drugs. AANA J. 2015;83:425–33.

    PubMed  Google Scholar 

  95. Potter BK, Forsberg JA, Davis TA, et al. Heterotopic ossification following combat-related trauma. J Bone Jt Surg Ser A. 2010;92:74–89.

    Google Scholar 

  96. Rivera JC, Hsu JR, Noel SP, Wenke JC, Rathbone CR. Locally delivered nonsteroidal antiinflammatory drug: a potential option for heterotopic ossification prevention. Clin Transl Sci. 2015;8:591–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Macfarlane RJ, Han Ng B, Gamie Z, El Masry MA, Velonis S, Schizas C, Tsiridis E. Pharmacological treatment of heterotopic ossification following hip and acetabular surgery. Expert Opin Pharmacother. 2008;9:767–86.

    CAS  PubMed  Google Scholar 

  98. Trott KR, Kamprad F. Radiobiological mechanisms of anti-inflammatory radiotherapy. Radiother Oncol. 1999;51:197–203.

    CAS  PubMed  Google Scholar 

  99. Gregoritch SJ, Chadha M, Pelligrini VD, Rubin P, Kantorowitz DA. Randomized trial comparing preoperative versus postoperative irradiation for prevention of heterotopic ossification following prosthetic total hip replacement: preliminary results. Int J Radiat Oncol Biol Phys. 1994;30:55–62.

    CAS  PubMed  Google Scholar 

  100. Seegenschmiedt MH, Keilholz L, Martus P, Goldmann A, Wölfel R, Henning F, Sauer R. Prevention of heterotopic ossification about the hip: final results of two randomized trials in 410 patients using either preoperative or postoperative radiation therapy. Int J Radiat Oncol Biol Phys. 1997;39:161–71.

    CAS  PubMed  Google Scholar 

  101. Seegenschmiedt MH, Makoski HB, Micke O. Radiation prophylaxis for heterotopic ossification about the hip joint – a multicenter study. Int J Radiat Oncol Biol Phys. 2001;51:756–65.

    CAS  PubMed  Google Scholar 

  102. Hamid N, Ashraf N, Bosse MJ, Connor PM, Kellam JF, Sims SH, Stull DE, Jeray KJ, Hymes RA, Lowe TJ. Radiation therapy for heterotopic ossification prophylaxis acutely after elbow trauma. J Bone Jt Surg. 2010;92:2032–8.

    Google Scholar 

  103. Juarez JK, Wenke JC, Rivera JC. Treatments and preventative measures for trauma-induced heterotopic ossification: a review. Clin Transl Sci. 2018;11:365.

    PubMed  PubMed Central  Google Scholar 

  104. Pakos EE, Papadopoulos D V, Gelalis ID, Tsantes AG, Gkiatas I, Kosmas D, Tsekeris PG, Xenakis TA. Is prophylaxis for heterotopic ossification with radiation therapy after THR associated with early loosening or carcinogenesis? HIP Int. 2019. 112070001984272.

    Google Scholar 

  105. Baird EO, Kang QK. Prophylaxis of heterotopic ossification – an updated review. J Orthop Surg Res. 2009;4:12.

    PubMed  PubMed Central  Google Scholar 

  106. Pakos EE, Ioannidis JPA. Radiotherapy vs. nonsteroidal anti-inflammatory drugs for the prevention of heterotopic ossification after major hip procedures: a meta-analysis of randomized trials. Int J Radiat Oncol. 2004;60:888–95.

    CAS  Google Scholar 

  107. Blokhuis TJ, Frölke JPM. Is radiation superior to indomethacin to prevent heterotopic ossification in acetabular fractures?: a systematic review. Clin Orthop Relat Res. 2009;467:526–30.

    PubMed  Google Scholar 

  108. Burd TA, Hughes MS, Anglen JO. Heterotopic ossification prophylaxis with indomethacin increases the risk of long-bone nonunion. J Bone Joint Surg Br. 2003;85:700–5.

    CAS  PubMed  Google Scholar 

  109. Robertson AD, Chiaramonti AM, Nguyen TP, et al. Failure of indomethacin and radiation to prevent blast-induced heterotopic ossification in a Sprague-dawley rat model. Clin Orthop Relat Res. 2019;477:644–54.

    PubMed  Google Scholar 

  110. Pellegrini VJD. Heterotopic ossification following extremity blast amputation: an animal model in the Sprague Dawley Rat. 2016.

    Google Scholar 

  111. Tintle SM, Shawen SB, Forsberg JA, Gajewski DA, Keeling JJ, Andersen RC, Potter BK. Reoperation after combat-related major lower extremity amputations. J Orthop Trauma. 2014;28:232–7.

    PubMed  Google Scholar 

  112. Pavey GJ, Polfer EM, Nappo KE, Tintle SM, Forsberg JA, Potter BK. What risk factors predict recurrence of heterotopic ossification after excision in combat-related amputations? Clin Orthop Relat Res. 2015;473:2814–24.

    PubMed  PubMed Central  Google Scholar 

  113. Shimono K, Tung W-E, Macolino C, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med. 2011;17:454–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hind M, Stinchcombe S. Palovarotene, a novel retinoic acid receptor gamma agonist for the treatment of emphysema. Curr Opin Investig Drugs. 2009;10:1243–50.

    CAS  PubMed  Google Scholar 

  115. Stolk J, Stockley RA, Stoel BC, et al. Randomised controlled trial for emphysema with a selective agonist of the γ-type retinoic acid receptor. Eur Respir J. 2012;40:306–12.

    CAS  PubMed  Google Scholar 

  116. Chakkalakal SA, Uchibe K, Convente MR, Zhang D, Economides AN, Kaplan FS, Pacifici M, Iwamoto M, Shore EM. Palovarotene inhibits heterotopic ossification and maintains limb mobility and growth in mice with the human ACVR1 R206H fibrodysplasia ossificans progressiva (FOP) mutation. J Bone Miner Res. 2016;31:1666–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pavey GJ, Qureshi AT, Tomasino AM, et al. Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model. Bone. 2016;90:159–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lees-Shepard JB, Nicholas S-AE, Stoessel SJ, Devarakonda PM, Schneider MJ, Yamamoto M, Goldhamer DJ. Palovarotene reduces heterotopic ossification in juvenile FOP mice but exhibits pronounced skeletal toxicity. elife. 2018;7:e40814. https://doi.org/10.7554/eLife.40814.001.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Clementia Pharmaceuticals. An efficacy and safety study of palovarotene to treat preosseous flare-ups in FOP subjects. 2017. In: ClinicalTrails.gov. https://clinicaltrials.gov/ct2/show/NCT02190747. Accessed 24 Jun 2019.

  120. Clementia Pharmaceuticals. An efficacy and safety study of palovarotene for the treatment of FOP. 2019. In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03312634. Accessed 24 Jun 2019.

  121. Yu PB, Deng DY, Lai CS, et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 2008;14:1363–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Peterson JR, De La Rosa S, Eboda O, et al. Treatment of heterotopic ossification through remote ATP hydrolysis. Sci Transl Med. 2014;6:255ra132.

    PubMed  PubMed Central  Google Scholar 

  123. Wang H, Lindborg C, Lounev V, et al. Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling. J Bone Miner Res. 2016;31:1652–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Agarwal S, Loder S, Brownley C, et al. Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci U S A. 2016;113:E338–47.

    CAS  PubMed  Google Scholar 

  125. Zimmermann SM, Würgler-Hauri CC, Wanner GA, Simmen HP, Werner CML. Echinomycin in the prevention of heterotopic ossification – an experimental antibiotic agent shows promising results in a murine model. Injury. 2013;44:570–5.

    CAS  PubMed  Google Scholar 

  126. Seavey JG, Wheatley BM, Pavey GJ, et al. Early local delivery of vancomycin suppresses ectopic bone formation in a rat model of Trauma-induced heterotopic ossification. J Orthop Res. 2017;35:2397–406.

    CAS  PubMed  Google Scholar 

  127. Kan L, Liu Y, McGuire TL, Berger DMP, Awatramani RB, Dymecki SM, Kessler JA. Dysregulation of local stem/progenitor cells as a common cellular mechanism for heterotopic ossification. Stem Cells. 2009;27:150–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Genêt F, Kulina I, Vaquette C, et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J Pathol. 2015;236:229–40.

    PubMed  Google Scholar 

  129. Hannallah D, Peng H, Young B, Usas A, Gearhart B, Huard J, Surgery J. Retroviral delivery of noggin inhibits the formation of heterotopic ossification induced by BMP-4. J Bone Jt Surg. 2004;86:80–91.

    Google Scholar 

  130. Kocić M, Lazović M, Kojović Z, Mitković M, Milenković S, Cirić T. Methods of the physical medicine therapy in prevention of heterotopic ossification after total hip arthroplasty. Vojnosanit Pregl. 2006;63:807–11.

    PubMed  Google Scholar 

  131. Durović A, Miljković D, Brdareski Z, Plavšić A, Jevtić M. Pulse low-intensity electromagnetic field as prophylaxis of heterotopic ossification in patients with traumatic spinal cord injury. Vojnosanit Pregl. 2009;66:22–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam M. Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robinson, T.E., Cox, S.C., Grover, L.M. (2020). Heterotopic Ossification Following Traumatic Blast Injury. In: Aikawa, E., Hutcheson, J. (eds) Cardiovascular Calcification and Bone Mineralization. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-46725-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46725-8_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-46724-1

  • Online ISBN: 978-3-030-46725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics