Skip to main content

Bag of Tricks for 3D MRI Brain Tumor Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11992))

Abstract

3D brain tumor segmentation is essential for the diagnosis, monitoring, and treatment planning of brain diseases. In recent studies, the Deep Convolution Neural Network (DCNN) is one of the most potent methods for medical image segmentation. In this paper, we review the different kinds of tricks applied to 3D brain tumor segmentation with DNN. We divide such tricks into three main categories: data processing methods including data sampling, random patch-size training, and semi-supervised learning, model devising methods including architecture devising and result fusing, and optimizing processes including warming-up learning and multi-task learning. Most of these approaches are not particular to brain tumor segmentation, but applicable to other medical image segmentation problems as well. Evaluated on the BraTS2019 online testing set, we obtain Dice scores of 0.810, 0.883 and 0.861, and Hausdorff Distances (95th percentile) of 2.447, 4.792, and 5.581 for enhanced tumor core, whole tumor, and tumor core, respectively. Our method won the second place of the BraTS 2019 Challenge for the tumor segmentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  3. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, Klaus H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  4. McKinley, R., Meier, R., Wiest, R.: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40

    Chapter  Google Scholar 

  5. Lin, T.-Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  6. Goyal, P., et al.: Accurate, large minibatch SGD: Training imagenet in 1 h. arXiv preprint arXiv:1706.02677 (2017)

  7. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  8. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS) 34, 1993–2024 (2014). https://doi.org/10.1109/tmi.2014.2377694

  9. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

  10. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. 286 (2017). https://doi.org/10.7937/k9/tcia.2017.klxwjj1q

  11. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. 286 (2017). https://doi.org/10.7937/k9/tcia.2017.gjq7r0ef

  12. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China(NSFC) Grants 61773376, 61721004, 61836014, as well as Beijing Science and Technology Program Grant Z181100008918010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Xing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, YX., Zhang, YM., Liu, CL. (2020). Bag of Tricks for 3D MRI Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46640-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46639-8

  • Online ISBN: 978-3-030-46640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics