Skip to main content

Wood Anatomy, Chemistry and Physical Properties

  • Chapter
  • First Online:
Biodeterioration of Wooden Cultural Heritage

Abstract

This chapter introduces the reader to basic elements of wood anatomy, chemistry and physical properties, aiming to assist with the understanding of the morphological and physicochemical alterations occurring in wood due to biodeterioration.

Wood is examined through the perspective of botany and observed as the main tissue system of a vascular plant. The xylogenesis process is then presented, in which cells produced by the vascular cambium differentiate into mature xylem via cell walls expansion, thickening, lignification and programmed cell death. Anatomy of softwoods’ and hardwoods’ xylem cell types follows, where parenchyma cells, tracheids, fibres and vessels along with features of their ultrastructure are described. The wood tissue is also examined macroscopically and characteristics observed on the transverse plane are mentioned.

Furthermore, the chemistry of the secondary xylem is introduced through the description of the three major chemical structural components, cellulose, hemicelluloses and lignin. Special reference is given to the cellulose polymer and to the aggregation of its β-d-glucose units to elementary fibrils, microfibrils and macrofibrils. Hemicelluloses’ principal groups like xylans, mannans, xyloglucans and galactans are discussed, whereas for lignin, the participation of p-hydroxyphenyl, guaiacyl and syringyl units within its macromolecule is outlined. Moreover, the topochemistry of the wood cell walls is further examined, where the middle lamella, primary and secondary wall are described in relation to their chemical composition. The non-structural fraction of wood, consisting of extractives and some inorganic compounds, is briefly referred to. The last part of the chapter deals with aspects of wood physical properties such as hygroscopicity, shrinkage/swelling and density, while mention is also made on the mechanical properties of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tracheary from trachea (τραχέα) in Greek: duct (vasculum in Latin).

  2. 2.

    Coniferophyta is synonymous to Pinophyta (Gymnospermae clade: naked seed), conifers, softwoods.

  3. 3.

    Magnoliophyta is synonymous to Anthophyta (Agiospermae clade: seed closed into a fruit), broadleaves, hardwoods.

  4. 4.

    Xylem from xylon (ξύλον) in Greek: wood.

  5. 5.

    Phloem from phloios (φλοιός) in Greek: bark.

  6. 6.

    Meristem from meristos (μεριστός) in Greek: divisible (Singh et al. 1987).

  7. 7.

    Libriform fibres bear simple to minutely bordered pits, whereas fibre-tracheids bear bordered pits (Wheeler et al. 1989).

  8. 8.

    Compression wood is a type of abnormal tissue formed in conifers at the lower side of lining stems in response to gravitational or to mechanical stimuli, and has more lignin and less cellulose than normal wood. Tension wood is formed in hardwoods under similar stimuli on the upper side of leaning stems and contains less lignin and more cellulose than normal wood. Compression and tension wood are termed collectivelly “reaction wood” (Panshin and de Zeeuw 1980; Tsoumis 1991).

  9. 9.

    In solution the open-chain form of β-d glucose is mainly present in a cyclic form and is named β-d glucopyranose.

  10. 10.

    Wood carbohydrates, cellulose, hemicelluloses and pectins are called collectively “holocellulose” (Tsoumis 1991).

  11. 11.

    This layer can be referred as tertiary layer or tertiary wall; however, this terminology is not accepted by wood anatomists (Panshin and de Zeeuw 1980).

  12. 12.

    MC = (wet weigh − oven dried weight)/oven dried weight.

  13. 13.

    Stress (σ) is defined as the force or load per unit area or volume and is expressed in N/mm2.

References

  • Abe, K., & Yamamoto, H. (2006). Behavior of the cellulose microfibril in shrinking woods. Journal of Wood Science, 52, 15–19.

    Article  CAS  Google Scholar 

  • Adler, E. (1977). Lignin chemistry-past, present and future. Wood Science and Technology, 11, 169–218.

    Article  CAS  Google Scholar 

  • Altaner, C., Hapca, A. I., Knox, J. P., & Jarvis, M. C. (2007). Detection of b-1-4-galactan in compression wood of Sitka spruce [Picea sitchensis (Bong.) Carrier] by immunofluorescence. Holzforschung, 61, 311–316.

    Article  CAS  Google Scholar 

  • Altaner, C., Tokareva, E. N., Jarvis, M. C., & Harris, P. J. (2010). Distribution of (1→4)-β-galactans, arabinogalactan proteins, xylans and (1→3)-β-glucans in tracheid cell walls of softwoods. Tree Physiology, 30, 1–12.

    Article  CAS  Google Scholar 

  • Arend, M. (2009). Immunolocalization of (1,4)-β-galactan in tension wood fibers of poplar. Tree Physiology, 28, 1263–1267.

    Article  Google Scholar 

  • Baas, P., & Schweingruber, F. H. (1987). Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bulletin, 8(3), 245–274.

    Article  Google Scholar 

  • Bailey, I. W. (1909). The Structure of the wood in the pineae. Botanical Gazette, 48(1), 47–55.

    Google Scholar 

  • Bass, P. (1986). Terminology of imperforate tracheary elements—in defence of libriform fibres with minutely bordered pits. IAWA Bulletin, 7(1), 82–86.

    Article  Google Scholar 

  • Bauch, J., & Berndt, H. (1973). Variability of the chemical composition of pit membranes in bordered pits of gymnosperms. Wood Science and Technology, 7(1), 6–19.

    Article  CAS  Google Scholar 

  • Beauchamp, K., Mencuccini, M., Perks, M., & Gardiner, B. (2013). The regulation of sapwood area, water transport and heartwood formation in Sitka spruce. Plant Ecology & Diversity, 6(1), 45–56.

    Google Scholar 

  • Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Reviews in Plant Biology, 54, 519–546.

    Article  CAS  Google Scholar 

  • Bonawitz, N. D., & Chapple, C. (2010). The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annual Reviews in Genetics, 44, 337–363.

    Article  CAS  Google Scholar 

  • Bourquin, V., Nishikubo, N., Abe, H., Brumer, H., Denman, S., Eklund, M., Christiernin, M., Teeri, T. T., Sundberg, B., & Mellerowicz, E. J. (2002). Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. The Plant Cell, 14, 3073–3088.

    Article  CAS  Google Scholar 

  • Bouveng, & Meier. (1959). Studies on a galactan from Norwegian spruce compression wood (Picea abies Karst). Acta Chemica Scadinavica, 13, 1884–1889.

    Article  CAS  Google Scholar 

  • Brodzski, P. (1972). Callose in compression wood traheids. Acta Societatis Botanicorum, Poloniae, XLI(3), 321–327.

    Google Scholar 

  • Campbell, P., & Braam, G. (1999). Xyloglucan endotransglycosylases: Diversity of genes, enzymes and potential wall-modifying functions. Trends in Plant Science Reviews, 4(9), 361–366.

    Article  CAS  Google Scholar 

  • Carlsbecker, A., & Helariutta, Y. (2005). Phloem and xylem specification: Pieces of the puzzle emerge. Current Opinion in Plant Biology, 8, 512–517.

    Article  CAS  Google Scholar 

  • Chandrasekaran, R., & Janaswamy, S. (2002). Morphology of Western larch arabinogalactan. Carbohydrate Research, 337, 2211–2222.

    Article  CAS  Google Scholar 

  • Chen, H. (2014). Chemical composition and structure of natural lignocellulose. In Biotechnology of lignocellulose: Theory and practice (pp. 25–71). Beijing: Chemical Industry Press; Springer Science.

    Google Scholar 

  • Cosgrove, D. J. (1999). Enzymes and other agents that enhance cell wall extensibility. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 1–718.

    Article  Google Scholar 

  • Cosgrove, D. J. (2005). Growth of the plant cell wall. Reviews, 6, 850–861.

    CAS  Google Scholar 

  • Cosgrove, D. J., Li, L. C., Cho, H.-T., Hoffmann-Benning, S., Moore, R. C., & Blecker, D. (2002). The growing world of expansins. Plant Cell Physiology, 43(12), 1436–1444.

    Article  CAS  Google Scholar 

  • Cown, D. J. (1978). Comparison of the pilodyn and torsiometer methods for the rapid assessment of wood density in living trees. New Zealand Journal of Forest Science, 8(3), 384–391.

    Google Scholar 

  • Cutter, E. G. (1978). Plant anatomy: Part I, cells and tissues (2nd ed., 315 pp.), In E. J. W. Barrington & A. J. Wilis (Eds.). London: Edward Arnold.

    Google Scholar 

  • de Candolle, M. A. P. (1813). Théorie élémentaire de la botanique, ou exposition des principes de classification naturelle et de l’art, de décrire les végétaux. Paris, Déterville.

    Google Scholar 

  • De Ridder, M., Van den Bulcke, J., Vansteenkiste, D., Van Loo, D., Dierick, M., Masschaele, B., De Witte, Y., Mannes, D., Lehmann, E., Beeckman, H., & Van Hoorebeke, L. (2011). High-resolution proxies for wood density variations in Terminalia superba. Annals of Botany, 107, 293–302. 

    Google Scholar 

  • Demura, T., & Fukuda, H. (2007). Transcriptional regulation in wood formation. Trends in Plant Science, 12(2), 64–70.

    Google Scholar 

  • Desch, H. E., & Dinwoodie, J. M. (1996). Timber structure, properties, conversion and use (7th ed., 306 pp). Basingstoke: Macmillan.

    Google Scholar 

  • Dinwoodie. (1974). Timber – A review of the structure-mechanical property relationship. Journal of Microscopy, 104, 3–32.

    Article  Google Scholar 

  • Donaldson, L. A. (1985). Within-and between-tree variation in lignin concentration in the traceid cell wall of Pinus radiata. New Zealand Journal of Forestry Science, 15(3), 361–369.

    Google Scholar 

  • Donaldson, L. A. (2001). Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry, 57(6), 859–873.

    Article  CAS  Google Scholar 

  • Ebringerova, A. (2006). Structural diversity and application potential of hemicelluloses. Macromolecular Symposia, 232, 1–12.

    Article  CAS  Google Scholar 

  • Ebringerova, A., Hromádková, Z., & Heinze, T. (2005). Hemicellulose. Advances in Polymer Science, 186, 1–67.

    Article  CAS  Google Scholar 

  • Engelund, E. T., Thygesen, L. G., Svensson, S., & Hill, C. A. (2013). A critical discussion of the physics of wood–water interactions. Wood Science and Technology47, 141–161.

    Google Scholar 

  • Esau, K. (1977). Anatomy of seed plants (2nd ed., 550 pp). New York: Wiley.

    Google Scholar 

  • Fahn, A. (1974). Plant anatomy (611 pp). Oxford: Pergamon Press.

    Google Scholar 

  • Fahn, A. (1988). Secretory tissues in vascular plants, Tansley Review No. 14. New Phytologist, 108, 229–257.

    Article  Google Scholar 

  • Fengel, D., & Wegener, G. (2003). Wood: Chemistry, ultrastructure, reactions (613pp). Remagen: Verlag Kessel.

    Google Scholar 

  • Fry, F. C. (1989). The structure and functions of xyloglucan. Journal of Experimental Botany, 40(210), 1–11.

    Article  CAS  Google Scholar 

  • Fukuda, H. (1997). Tracheary element differentiation. The Plant Cell, 9, 1147–1156.

    Article  CAS  Google Scholar 

  • Gellerstedt, G., & Henriksson, G. (2008). Lignins: Major sources, structure and properties. In M. N. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources (pp. 201–224). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gerhards, C. C. (1980). Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood and Fiber, 4(1), 4–36.

    Google Scholar 

  • Gernandt, D. S., Willyard, A., Syring, J. V., & Liston, A. (2011). The conifers (Pinophyta). In C. Plomion, J. Bousquet, & C. Kole (Eds.), Genetics, genomics and breeding of conifers (pp. 1–39). Boca Raton: CRC Press.

    Google Scholar 

  • Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800.

    Article  CAS  Google Scholar 

  • Glass, S. V., & Zelinka, S. L. (2010). Moisture relations and physical properties of wood (pp. 1–19). General technical report FPL–GTR–190.

    Google Scholar 

  • Graham, L. E. (1993). Origin of land plants (287 pp). New York: Wiley.

    Google Scholar 

  • Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461.

    Article  Google Scholar 

  • Hatakeyama, H., & Hatakeyama, T. (2009). Lignin structure, properties, and applications. In Biopolymers (pp. 1–63). Berlin: Springer.

    Google Scholar 

  • Hayashi, T. (1989). Xyloglucans in the primary cell wall. Annual Review of Plant Biology, 40(1), 139–168.

    Article  CAS  Google Scholar 

  • Hayashi, T., & Kaida, R. (2011). Functions of xyloglucan in plant cells. Molecular Plant, 4(1), 17–24.

    Article  CAS  Google Scholar 

  • Higuchi, T. (1997). Biochemistry and Molecular Biology of Wood (362 pp). Berlin: Springer-Verlag.

    Google Scholar 

  • Hoadley, B. R. (1990). Identifying wood: Accurate results with simple tools (223 pp). Newtown, Connecticut: Taunton Press.

    Google Scholar 

  • Hoffmann, G. C., & Timell, T. E. (1970). Isolation of a β-1, 3-glucan (laricinan) from compression wood of Larix laricina. Wood Science and Technology, 4(2), 159–162.

    Article  CAS  Google Scholar 

  • Hon, D. N. S. (1994). Cellulose: A random walk along its historical path. Cellulose, 1(1), 1–25.

    Article  CAS  Google Scholar 

  • Huang, J., Fu, S., & Gan, L. (Eds) (2019). Structure and characteristics of lignin. In Lignin Chemistry and Applications, (Chap. 2, 25–50). Chemical Industry Press. Elsevier Inc.

    Google Scholar 

  • Huysmans, M., Lema, S., Coll, N. S., & Nowack, M. K. (2017). Dying two deaths—programmed cell death regulation in development and disease. Current Opinion in Plant Biology, 35, 37–44.

    Article  CAS  Google Scholar 

  • Iiyama, K., Lam, T. B. T., & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology, 104(2), 315.

    Article  CAS  Google Scholar 

  • Ishimaru, Y., & Iida, I. (2001). Transverse swelling behavior of hinoki (Chamaecyparis obtusa) revealed by the replica method. Journal of Wood Science, 47(3), 178–184.

    Article  Google Scholar 

  • Isik, F., & Li, B. (2003). Rapid assessment of wood density of live trees using the resistograph for selection in tree improvement programs. Canadian Journal of Forest Research, 33(12), 2426–2435.

    Article  Google Scholar 

  • Joseleau, J. P., Imai, T., Kuroda, K., & Ruel, K. (2004). Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta, 219(2), 338–345.

    Google Scholar 

  • Jutte, S. M., & Levy, J. F. (1973). Helical thickenings in the tracheids of Taxus and Pseudotsuga as revealed by the scanning reflection electron microscope. Plant Biology, 22(2), 100–105.

    Google Scholar 

  • Kenrick, P., & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389, 33–39.

    Article  CAS  Google Scholar 

  • Kien, D. N., Jansson, G., Harwood, C., Almqvist, C., & Thinh, H. H. (2008). Genetic variation in wood basic density and pilodyn penetration and their relationships with growth, stem straightness, and branch size for Eucalyptus Urophylla in New Zealand. New Zealand Journal of Forestry Science, 38(1), 160–175.

    Google Scholar 

  • Kim, J. S., & Daniel, G. (2014). Distributional variation of lignin and non-cellulosic polysaccharide epitopes in different pit membranes of Scots pine and Norway spruce seedlings. IAWA Journal, 35(4), 407–429.

    Article  CAS  Google Scholar 

  • Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.

    Article  CAS  Google Scholar 

  • Kollman, F. F. P., & Côté, W. A. (1968). Principles of wood science and technology: Solid wood (p. 592). London: Allen & Unwin.

    Book  Google Scholar 

  • Koponen, S., Toratti, T., & Kanerva, P. (1991). Modelling elastic and shrinkage properties of wood based on cell structure. Wood Science and Technology, 25(1), 25–32.

    Article  Google Scholar 

  • Kretschmann, D. E. (2010). Mechanical properties of wood. In Wood handbook: Wood as an engineering material (190, 46 pp). General Technical Report FPL-GTR.

    Google Scholar 

  • Laine, Ch. (2005). Structures of hemicelluloses and pectins in wood and pulp. Sc.D Thesis, Helsinki University of Technology Oy Keskuslaboratorio, Department of Chemical Technology KCL, Espoo.

    Google Scholar 

  • Li, A., Wang, Y., & Wu, H. (2009). Initiation and development of resin ducts in the major organs of Pinus massoniana. Frontiers of Forestry in China, 4(4), 501–507.

    Article  Google Scholar 

  • Liese, W. (1963). Tertiary wall and warty layer in wood cells. Journal of Polymer Science, Part C, 2(1), 213–229.

    Article  CAS  Google Scholar 

  • Lindgren, L. O. (1991). Medical CAT-scanning: X-ray absorption coefficients, CT-numbers and their relation to wood density. Wood Science and Technology, 25(5), 341–349.

    Article  CAS  Google Scholar 

  • Liu, J., Im Kim, J., Cusumano, J. C., Chapple, C., Venugopalan, N., Fischetti, R. F., & Makowski, L. (2016). The impact of alterations in lignin deposition on cellulose organization of the plant cell wall. Biotechnology for Biofuels, 9(1), 126.

    Article  CAS  Google Scholar 

  • Ma, Q., & Rudolph, V. (2006). Dimensional change behavior of Caribbean pine using an environmental scanning electron microscope. Drying Technology, 24(11), 1397–1403.

    Article  CAS  Google Scholar 

  • Mäki-Arvela, P., Salmi, T., Holmbom, B., Willför, S., & Murzin, D. Y. (2011). Synthesis of sugars by hydrolysis of hemicelluloses – A review. Chemical reviews, 111(9), 5638–5666.

    Article  CAS  Google Scholar 

  • Maschek, D., Goodell, B., Jellison, J., Lessard, M., & Militz, H. (2013). A new approach for the study of the chemical composition of bordered pit membranes: 4Pi and confocal laser scanning microscopy. American Journal of Botany, 100(9), 1751–1756.

    Article  Google Scholar 

  • Mast, S. W., Donaldson, L., Torr, K., Phillips, L., Flint, H., West, M., Strabala, T. J., & Wagner, A. (2009). Exploring the ultrastructural localization and biosynthesis of β (1, 4)-galactan in Pinus radiata compression wood. Plant Physiology, 150(2), 573–583.

    Article  CAS  Google Scholar 

  • McCann, M. C. (1997). Tracheary element formation: Building up to a dead end. Trends in Plant Science, 2(9), 333–338.

    Article  Google Scholar 

  • McCourt, R. M., Delwiche, C. F., & Karol, K. G. (2004). Charophyte algae and land plant origins. Trends in Ecology & Evolution, 19(12), 661–666.

    Article  Google Scholar 

  • Meerts, P. (2002). Mineral nutrient concentrations in sapwood and heartwood: A literature review. Annals of Forest Science, 59(7), 713–722.

    Article  Google Scholar 

  • Meier, H. (1962). Studies on a galactan from tension wood of beech (Fagus Sylvatica L.). Acta Chemica Scandinavica, 16, 2275–2283.

    Article  CAS  Google Scholar 

  • Meylan, B. A., & Butterfield, B. G. (1975). Occurrence of simple, multiple, and combination perforation plates in the vessels of New Zealand woods. New Zealand Journal of Botany, 13(1), 1–18.

    Article  Google Scholar 

  • Miedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5(358), 1–13.

    Google Scholar 

  • Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266–277.

    Article  CAS  Google Scholar 

  • Murata, K., & Masuda, M. (2006). Microscopic observation of transverse swelling of latewood tracheid: Effect of macroscopic/mesoscopic structure. Journal of Wood Science, 52(4), 283–289.

    Article  Google Scholar 

  • Myburg, A. A., & Sederoff, R. R. (2001). Xylem structure and function. Encyclopedia of Life Sciences, 1–9.

    Google Scholar 

  • Nakamura, K., Hatakeyama, T., & Hatakeyama, H. (1981). Studies on bound water of cellulose by differential scanning calorimetry. Textile Research Journal, 51(9), 607–613.

    Article  CAS  Google Scholar 

  • Nedukha, O. M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1), 49–57.

    Article  Google Scholar 

  • Pace, M. R., Lohmann, L. G., Olmstead, R. G., & Angyalossy, V. (2015). Wood anatomy of major Bignoniaceae clades. Plant Systematics and Evolution, 301(3), 967–995.

    Article  Google Scholar 

  • Panshin, A. J., & de Zeeuw, C. D. (1980). Textbook of wood technology (722 pp). New York: McGraw-Hill.

    Google Scholar 

  • Pettersen, R. C. (1984). The chemical composition of wood. The Chemistry of Solid Wood, 207, 57–126.

    Article  CAS  Google Scholar 

  • Philippou, I. L. (1986). Chemistry and chemical technology of wood. Thessaloniki: Giahoudi-Giapoudi, 358 pp. (in Greek)

    Google Scholar 

  • Pickard, W. F. (2008). Laticifers and secretory ducts: Two other tube systems in plants. New Phytologist, 177(4), 877–888.

    Article  Google Scholar 

  • Piršelová, B., & Matušíková, I. (2013). Callose: The plant cell wall polysaccharide with multiple biological functions. Acta Physiologiae Plantarum, 35(3), 635–644.

    Article  CAS  Google Scholar 

  • Plomion, C., Leprovost, G., & Stokes, A. (2001). Wood formation in trees. Plant Physiology, 127(4), 1513–1523.

    Article  CAS  Google Scholar 

  • Rafsanjani, A., Stiefel, M., Jefimovs, K., Mokso, R., Derome, D., & Carmeliet, J. (2014). Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. Journal of the Royal Society Interface, 11(95), 20140126.

    Article  Google Scholar 

  • Roberts, K., & McCann, M. C. (2000). Xylogenesis: The birth of a corpse. Current Opinion in Plant Biology, 3(6), 517–522.

    Article  CAS  Google Scholar 

  • Rowell, R. M. (2005). Moisture properties. In R. M. Rowell (Ed.), Handbook of wood chemistry and wood composites (pp. 77–98). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rowell, R. M., Pettersen, R., Han, J. S., Rowell, J. S., & Tshabalala, M. A. (2005). Cell wall chemistry. In R. M. Rowell (Ed.), Handbook of wood chemistry and wood composites (pp. 35–74). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sarkar, P., Bosneaga, E., & Auer, M. (2009). Plant cell walls throughout evolution: Towards a molecular understanding of their design principles. Journal of Experimental Botany, 60(13), 3615–3635.

    Google Scholar 

  • Schädel, C., Blöchl, A., Richter, A., & Hoch, G. (2010). Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant physiology and Biochemistry, 48(1), 1–8.

    Article  CAS  Google Scholar 

  • Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263–289.

    Article  CAS  Google Scholar 

  • Simpson, M. G. (2010). Plant systematics (2nd ed., 752 pp). London: Academic.

    Google Scholar 

  • Simpson, W., & TenWolde, A. (1999). Physical properties and moisture relations of wood. In Wood handbook: Wood as an engineering material. USDA Forest Service General Technical Report FPL-GTR-113, Madison.

    Google Scholar 

  • Singh, V., Pande, P. C., & Jain, D. K. (1987). Anatomy of seed plants (1st ed., p. 388). Meerut: Rastogi.

    Google Scholar 

  • Singh, A. P., Schmitt, U., Dawson, B. S., & Rickard, C. (2009). Biomodification of Pinus radiata wood to enhance penetrability. New Zealand Journal of Forestry Science, 39, 145–151.

    Google Scholar 

  • Sjöström, E. (1993). Wood chemistry: Fundamentals and applications (2nd ed., 293 pp). London: Academic.

    Google Scholar 

  • Sjöström, E., & Westermark, U. (1999). Chemical composition of wood and pulps: Basic constituents and their distribution. In E. Sjöström & R. Alén (Eds.), Analytical methods in wood chemistry, pulping, and papermaking (pp. 1–19). Berlin: Springer.

    Chapter  Google Scholar 

  • Skaar, C. (1988). Wood-water relations (p. 283). Berlin: Springer.

    Book  Google Scholar 

  • Smith, D. M. (1954). Maximum moisture content method for determining specific gravity of small wood samples. Madison, WI: US Dept. of Agriculture, Forest Service, Forest Products Laboratory, Rept. No. 2014.

    Google Scholar 

  • Soriano, J., da Veiga, N. S., & Martins, I. Z. (2015). Wood density estimation using the sclerometric method. European Journal of Wood and Wood Products, 73(6), 753–758.

    Article  CAS  Google Scholar 

  • Sperry, J. S., Hacke, U. G., & Pittermann, J. (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93(10), 1490–1500.

    Article  Google Scholar 

  • Spiridon, I., & Popa, V. I. (2008). Hemicelluloses: Major sources, properties and applications (289–304 pp). In: A. Gandini & M. N. Belgacem (Eds.), Monomers, polymers and composites from renewable resources (551 pp). Elsevier.

    Google Scholar 

  • Stamm, A. J. (1929). Density of wood substance, adsorption by wood, and permeability of wood. Journal of Physical Chemistry, 33(3), 398–414.

    Article  CAS  Google Scholar 

  • Stevanovic, T. (2016). Chemical composition and properties of wood. In M. N. Belgacem & A. Pizzi (Eds.), Lignocellulosic fibers and wood handbook: Renewable materials for today’s environment (pp. 49–106). New York: Wiley.

    Chapter  Google Scholar 

  • Takhtajan, A. (2009). Flowering plants (2nd ed., 751 pp). New York: Springer Science & Business Media.

    Book  Google Scholar 

  • Taylor, A. M., Gartner, B. L., & Morrell, J. J. (2002). Heartwood formation and natural durability – A review. Wood and fiber Science, 34(4), 587–611.

    CAS  Google Scholar 

  • Taylor, A., Plank, B., Standfest, G., & Petutschnigg, A. (2013). Beech wood shrinkage observed at the micro-scale by a time series of X-ray computed tomographs (μXCT). Holzforschung, 67(2), 201–205.

    Article  CAS  Google Scholar 

  • Time, B. (1998). Hygroscopic moisture, transport in wood (216 pp). Eng D. Thesis, Department of Building and Construction Engineering, Norwegian University of Science and Technology, Trondheim.

    Google Scholar 

  • Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology, 1(1), 45–70.

    Article  CAS  Google Scholar 

  • Timell, T. E. (1978). Helical thickenings and helical cavities in normal and compression woods of Taxus baccata. Wood Science and Technology, 12(1), 1–15.

    Google Scholar 

  • Timell, T. E. (1982). Recent progress in the chemistry and topochemistry of compression wood. Wood Science and Technology, 16(2), 83–122.

    Article  CAS  Google Scholar 

  • Tsoumis, G. (1983). Wood science and technology (655 pp). Thessaloniki (in Greek).

    Google Scholar 

  • Tsoumis, G. (1991). Science and technology of wood: Structure, properties, utilization (400 pp). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Turner, G. W. (1999). A brief history of the lysigenous gland hypothesis. The Botanical Review, 65(1), 76–88.

    Article  Google Scholar 

  • USDA, NRCS. (2020). The plants database national plant data team. Greensboro, NC 27401-4901. Retrieved from https://plants.sc.egov.usda.gov/classification.html

  • Uthappa, A. R., Hegde, M., Kumar, P. K., Singh, B. G., & Prashanth, R. S. (2017). Rapid measurement of density of wood in progeny trial of Acacia mangium Willd. Using resistograph—A nondestructive method. In K. K. Pandey et al. (Eds.), Wood is good (pp. 37–45). Singapore: Springer.

    Chapter  Google Scholar 

  • Volkmann, D., & Baluška, F. (2006). Gravity: One of the driving forces for evolution. Protoplasma, 229(2–4), 143–148.

    Article  CAS  Google Scholar 

  • Wellman, C. H., Osterloff, P. L., & Mohiuddin, U. (2003). Fragments of the earliest land plants. Nature, 425(6955), 282–285.

    Article  CAS  Google Scholar 

  • Werker, E., & Fahn, A. F. L. S. (1969). Resin ducts of Pinus halepensis Mill. – Their structure, development and pattern of arrangement. Botanical Journal of the Linnean Society, 62(4), 379–411.

    Article  Google Scholar 

  • Werner, K., Pommer, L., & Broström, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110, 130–137.

    Article  CAS  Google Scholar 

  • Wheeler, E. A., Baas, P., & Gasson, P. E. (Eds.). (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin, 10(3):219–332.

    Google Scholar 

  • Willats, W. G., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: Cell biology and prospects for functional analysis. Plant Molecular Biology, 47, 9–27.

    Article  CAS  Google Scholar 

  • Yamamoto, H., Sassus, F., Ninomiya, M., & Gril, J. (2001). A model of anisotropic swelling and shrinking process of wood. Wood Science and Technology, 35(1–2), 167–181.

    Article  CAS  Google Scholar 

  • Zeeman, S. C., Kossmann, J., & Smith, A. M. (2010). Starch: Its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 61, 209–234.

    Article  CAS  Google Scholar 

  • Zhong, R., & Ye, Z. H. (2015). Secondary cell walls: Biosynthesis, patterned deposition and transcriptional regulation. Plant and Cell Physiology, 56(2), 195–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pournou, A. (2020). Wood Anatomy, Chemistry and Physical Properties. In: Biodeterioration of Wooden Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-46504-9_1

Download citation

Publish with us

Policies and ethics