Skip to main content

Fungi as a Biological Tool for Sustainable Agriculture

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The rising demand for environmentally friendly, organic, and sustainable agricultural practices is driving the application on the use of beneficial biological products. Sustainability has become an integral component of the agriculture system. The use of fungi in agriculture sector is potentially useful for improved plant health and growth, water uptake, nutrient availability, stress tolerance, and biocontrol. Fungal species served as a very important biological tool in sustainable agricultural ecosystem with the process of mycoremediation, mycocontrol—mycoherbicides, mycoinsecticides, and as mycorrhiza fungi. Examples of fungi used as mycoremediators are—Pleurotus ostreatus, Rhizopus arrhizus, Phanerochaete chrysosporium, P. sordid, Trametes hirsute, T. versicolor, Lentinus edodes, and L. tigrinus. The fungi plays a pivotal role in the process of mycoremediation, mycocontrol, mycoherbicides, mycoinsecticides, as mycorrhizal fungi and have potential role for attaining sustainable agricultural systems. The chapter aims to study the role of fungi and ways to exploits their potential to remediate polluted soil and build a sustainable agriculture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi H, Akhtar A, Sharf R (2015) Vesicular arbuscular mycorrhizal (VAM) fungi: a tool for sustainable agriculture. Am J Plant Nutr Fert Technol 5:40–49

    Google Scholar 

  • Adenipekun C, Fasidi I (2005) Bioremediation of oil-polluted soil by Lentinus subnudus, a Nigerian white-rot fungus. Afr J Biotechnol 4:796–798

    CAS  Google Scholar 

  • Adenipekun CO, Isikhuemhen OS (2008) Bioremediation of engine oil polluted soil by the tropical white-rot fungus, Lentinus squarrosulus Mont. (singer). Pak J Biol Sci 11:1634–1637

    CAS  PubMed  Google Scholar 

  • Adenipekun C, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Bio Rev 7:62–68

    CAS  Google Scholar 

  • Adenipekun CO, Ejoh EO, Ogunjobi AA (2011a) Bioremediation of cutting fluids contaminated soil by Pleurotus tuber-regium singer. Environment 32:11–18

    Google Scholar 

  • Adenipekun CO, Ogunjobi AA, Ogunseye OA (2011b) Management of polluted soils by a white-rot fungus, Pleurotus pulmonarius. Assumption Univ J Tech 15:57–61

    Google Scholar 

  • Adenipekun CO, Ejoh OE, Ogunjobi AA (2012) Bioremediation of cutting fluids contaminated soil by Pleurotus tuber-regium singer. Environment 32:11–18

    Google Scholar 

  • Aitken MB, Irvine RL (1989) Stability testing of ligninase and Mn-peroxidase from Phanerochaete chrysosporium. Biotechnol Bioeng J 34:1251–1260

    CAS  Google Scholar 

  • Akinyele BJ, Olaniyi OO, Arotupin DJ (2011) Bioconversion of selected agricultural wastes and associated enzymes by Volvariella volvacea: an edible mushroom. Res J Microbiol 4:63–70

    Google Scholar 

  • Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malaysian J Microbiol 4:135–140

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Asgher MHN, Bhatti M, Ashraf LRL (2008) Recent developments in biodegradation of industrial pollutants by white-rot fungi and their enzyme system. Biodegradation 19:771–783

    CAS  PubMed  Google Scholar 

  • Ashoka G, Geetha MS, Sullia SB (2002) Bioleaching of composite textile dye effluent using bacterial consortia. Asian J Microbiol Biotech Environ Sci 4:65–68

    Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Baldrian P, Der Wiesche CI, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66:2471–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barr BP, Aust D (1994) Mechanisms of white-rot fungi use to degrade pollutant. Environ Sci Technol 28:78–87

    Google Scholar 

  • Basu S, Rabara RC, Negi S (2018) AMF: the future prospect for sustainable agriculture. Physiol Mol Plant Pathol 102:36–45

    Google Scholar 

  • Belewu MA, Belewu KY (2005) Cultivation of mushroom (Volvariella volvacea) on banana leaves. Afr J Biotechnol 4:1401–1403

    Google Scholar 

  • Bennet JW, Connick WJ, Daigle D, Wunch K (2001) Formulation of fungi for in situ bioremediation. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 99–108

    Google Scholar 

  • Bhatt M, Cajthaml T, Sasek V (2002) Mycoremediation of PAH-contaminated soils. Folia Microbiol 47:255–258

    CAS  Google Scholar 

  • Bhattacharya S, Angayarkanni J, Das A, Palaniswamy M (2012) Mycoremediation of Benzo[a]Pyrene by Pleurotus ostreatus isolated from Wayanad District in Kerala, India. Int J Pharm Bio Sci 2:84–93

    CAS  Google Scholar 

  • Bojan BW, Lamar RT, Burjus WD, Tien M (1999) Extent of humification of anthracene, fluoranthene and benzo (a) pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett Appl Microbiol 28:250–254

    Google Scholar 

  • Boopathy R (2005) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Google Scholar 

  • Brienzo M, Silva EM, Milagres AM (2007) Degradation of eucalyptus waste components by Lentinula edodes strains detected by chemical and near-infrared spectroscopy methods. App J Biochem Biotechnol 4:37–50

    Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    CAS  PubMed  Google Scholar 

  • Clark RB, Zeta SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    CAS  Google Scholar 

  • Clementina OA, Omoanghe SL (2008) Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer). Pak J Biol Sci 11:1634–1637

    Google Scholar 

  • Da Luz JMR, Paes SA, Nunes MD, da Silva MCS, Kasuya MCM (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One 4:69386

    Google Scholar 

  • Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegradation 41:111–117

    CAS  Google Scholar 

  • Eggen T, Sveum P (1999) Decontamination of aged creosote polluted soil: the influence of temperature, white-rot fungus Pleurotus ostreatus, and pre- treatment. Int Biodeterior Biodegradation 43:125–133

    CAS  Google Scholar 

  • Elekes CC, Busuioc G (2010) The mycoremediation of metals polluted soils using wild growing species of mushrooms. Not Bot Horti Agrobot Cluj Napoca 38:147

    CAS  Google Scholar 

  • Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chem Eng 2012:1

    Google Scholar 

  • Gadd G (2001) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Gaitán-Hernández R, Esqueda M, Gutiérrez A, Sánchez A, Beltrán-García M, Mata G (2006) Bioconversion of agrowastes by Lentinula edodes: the high potential of viticulture residues. Appl Microbiol Biotechnol 4:432–439

    Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    CAS  PubMed  Google Scholar 

  • Hart MM, Trevors JT (2005) Microbe management: application of mycorrhizal fungi in sustainable agriculture. Front Ecol Environ 3:533–539

    Google Scholar 

  • Hatami M, Ahangarani F (2016) Role of beneficial fungi in sustainable agricultural systems. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from an organic source. Nature 413:297–299

    CAS  PubMed  Google Scholar 

  • Isikhuemhen OS, Anoliefo G, Oghale O (2003) Bioremediation of crude oil polluted soil by the white-rot fungus, Pleurotus tuberregium (Fr.) Sing. Environ Sci Pollut Res 10:108–112

    CAS  Google Scholar 

  • Jibran AK, Milsee Mol JP (2011) Pleurotus sajor-caju protein: a potential biosorptive agent. Adv Biotechnol 4:25–27

    Google Scholar 

  • Jonathan SG, Fasidi I, Ajayi AO, Adegeye O (2008) Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer. Bioresour Technol 4:807–811

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kuforiji OO, Fasidi I (2008) Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Bioresour Technol 4:4275–4278

    Google Scholar 

  • Kuforiji OO, Fasidi IO (2009) Biodegradation of agro-industrial wastes by an edible mushroom Pleurotus tuber-regium (Fr.). J Environ Biol 4:355–358

    Google Scholar 

  • Kula AR, Harnett DC, Wilson GWT (2005) Effects of mycorrhizal symbiosis on tall-grass prairie plant–herbivore interactions. Ecol Lett 8:61–69

    Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P, Jain BL (2010) Bioremediation of industrial wastes through mushroom cultivation. J Environ Biol 4:441–444

    Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2013) Fungi as bioremediators: soil biology. In: Goltapeh EM, Danesh YR, Varma A (eds) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. Springer, Berlin, pp 77–116

    Google Scholar 

  • Kulshreshtha A, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:29

    PubMed  PubMed Central  Google Scholar 

  • Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4:190–195

    Google Scholar 

  • Lechner BE, Papinutti VL (2006) Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem 4:594–598

    Google Scholar 

  • Leonardi V, Vaclav Sasek V, Petruccioli P, D’Annibale EP, Cajthaml T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeterior Biodegradation 60:165–170

    CAS  Google Scholar 

  • Loske D, Huttermann A, Majerczk A, Zadrazil F, Lorsen H, Waldinger P (1990) Use of white rot fungi for the clean-up of contaminated sites. In: Coughlan MP, Collaco MY (eds) Advances in biological treatment of lignocellulosic materials. Elsevier, London, pp 311–321

    Google Scholar 

  • Luo D, Yf X, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 4:359–365

    Google Scholar 

  • Morgan P, Lewis ST, Watkinson RJ (1991) Comparison of abilities of white-rot fungus to mineralize selective xenobiotic compounds. Appl Microbiol Biotech 34:693–696

    CAS  Google Scholar 

  • Nagy B, Măicăneanu A, Indolean C, Mânzatu C, Silaghi-Dumitrescu MC (2013) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2013.08.013

  • Nigam P, Banat I M, McMullan G, Dalel S, Marchant R (1995) Microbial degradation of textile effluent containing Azo, Diazo and reactive dyes by aerobic and anaerobic bacterial and fungal cultures. In: 36th Annual Conference of AMI Hisar, pp 37–38

    Google Scholar 

  • Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lange E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    CAS  Google Scholar 

  • Okparanma RN, Ayotamuno JM, Davis DD, Allagoa M (2011) Mycoremediation of polycyclic aromatic hydrocarbons (PAH) - contaminated oil-based drill-cuttings. Afr J Biotechnol 10:5149–5156

    CAS  Google Scholar 

  • Ouzouni PK, Petridis D, Koller WD, Riganakos KA (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 115:1575–1580

    CAS  Google Scholar 

  • Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biotechnol Res 4:293–297

    Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int 2012:1. https://doi.org/10.1155/2012/243217

    Article  CAS  Google Scholar 

  • Purohit J, Chattopadhyay A, Biswas MK, Singh NK (2018) Mycoremediation of agricultural soil: bioprospection for sustainable development. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 91–120

    Google Scholar 

  • Rajput Y, Shit S, Shukla A, Shukla K (2011) Biodegradation of malachite green by wild mushroom of Chhattisgarh. J Exp Sci 4:69–72

    Google Scholar 

  • Rani P, Kalyani N, Prathiba K (2008) Evaluation of lignocellulosic wastes for production of edible mushrooms. Appl Biochem Biotechnol 4:151–159

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Cambridge

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Google Scholar 

  • Sack U, Gunther T (1993) Metabolism of PAH by fungi and correction with extracellular enzymatic activities. J Basic Microbiol 33:269–277

    CAS  PubMed  Google Scholar 

  • Sasek V (2003) Why mycoremediations have not yet come into practice. In: The utilization of bioremediation to reduce soil contamination: problems and solution. Kluwer Academic Publishers, Amsterdam, pp 247–266

    Google Scholar 

  • Sasek V, Cajthaml T (2005) Mycoremediation: current state and perspectives. Int J Med Mush 7:360–361

    Google Scholar 

  • Sesli E, Tuzen M (1999) Level of trace elements in the fruiting bodies of macrofungi growing in the East black sea region of Turkey. Food Chem 65:453–460

    CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, New York

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Singh VK, Singh M, Singh SK, Kumar C, Kumar A (2019) Sustainable agricultural practices using beneficial fungi under changing climate scenario. In: Climate change and agricultural ecosystems. Elsevier, Duxford, pp 25–42

    Google Scholar 

  • Smith S, Smith F, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbiosis: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses growth or total uptake. New Phytol 162:511–524

    Google Scholar 

  • Stella T, Covino S, KÅ™esinová Z, D’Annibale A, Petruccioli M, Cajthaml T (2012) Mycoremediation of PCBs dead – end metabolites: In vivo and In vitro degradation of chlorobenzoic acids by the white rot fungus Lentinus tigrinus. Environ Eng Manag J 11:9

    Google Scholar 

  • Sutherland C, Venkobachar C (2013) Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. Int J Plant Animal Environ Sci 4:193–203

    Google Scholar 

  • Sykes C (2002) Magical mushrooms: mycoremediation. Retrieved from www.realitysandwich.com/mycoremediation_and_oil_spills

  • Tanaka H, Itakura S, Enoki A (1999) Hydroxyl radical generation by an extracellular low- molecular–weight substance and phenol oxidase activities during wood degradation by the white–rot basidiomycetes Trametes versicolor. J Biotechnol 75:57–70

    CAS  PubMed  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600

    CAS  Google Scholar 

  • Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of Cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 4:825–830

    Google Scholar 

  • Thakur M (2014) Mycoremediation – a potential tool to control soil pollution. Asian J Environ Sci 9:24–31

    Google Scholar 

  • Thakur M (2019) Mushrooms as a biological tool in mycoremediation of polluted soils. In: Jindal T (ed) Emerging issues in ecology and environmental science (case studies from India). Springer, Cham, pp 27–42

    Google Scholar 

  • Thomas SA, Aston LM, Woodruff DL, Cullinan VI (2009) Field demonstration of mycoremediation for removal of fecal coliform bacteria and nutrients in the Dungeness watershed, Washington. Pacific Northwest National Laboratory, Richland, Washington 99352

    Google Scholar 

  • TiÅ¡ma M, Zelic B, Vasic-Racki D (2010) White-rot fungi in phenols, dyes and other xenobiotics treatment – a brief review. Croatian J Food Sci Technol 2:34–47

    Google Scholar 

  • Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 4:1079–1083

    Google Scholar 

  • van der Heijden MGA, Wiemken A, Sanders IR (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett 7:293–303

    Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    CAS  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Wolfe B, Husband B, Klironomos JN (2005) Effects of a belowground mutualism on an above ground mutualism. Ecol Lett 8:218–223

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Google Scholar 

Download references

Acknowledgments

The author thanks Dr. V K Modi, Director AIFT, AUUP for valuable guidance and expertise. I also thank my colleagues, Dr. Renu Khedkar and Dr. Karuna Singh for their valuable suggestions and support. I would also like to show my gratitude to Mr. Puneet for his contributions in designing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, M. (2020). Fungi as a Biological Tool for Sustainable Agriculture. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_11

Download citation

Publish with us

Policies and ethics