Skip to main content

Iris Photobiology and Scanning Modules

  • Chapter
  • First Online:
The Iris
  • 468 Accesses

Abstract

In order to evaluate the preferred modules to scan and document the iris structure, it is necessary to discuss the photobiology of the anterior chamber of the eye where the iris is located.

The emerging light has to pass through the 5 layers of the cornea, enter the anterior chamber, pass through the aqueous Humor, reach the iris surface, and then enter the iris stroma.

The absorption, scattering, and reflection of light have a crucial effect on iris’s emitted light and as the result its color. The amount of light absorption, scattering and light reflection is discussed in this chapter. Photobiology of melanin also plays a crucial role on the light absorption as well as scavenging of the reactive oxygen species (ROS).

The scanning modules for evaluating the microstructure of iris are discussed with an emphasis on optical coherence tomography (OCT) with the specific requirement of elaborating the unique iris tissue properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Amadio M, Govoni S, Pascale A. Targeting VEGF in eye neovascularization: what’s new? A comprehensive review on current therapies and oligonucleotide-based interventions under development. Pharmacol Res. 2016;103:253–69. https://doi.org/10.1016/j.phrs.2015.11.027.

    Article  CAS  PubMed  Google Scholar 

  2. Baumann B, Baumann SO, Konegger T, Pircher M, Götzinger E, Schlanitz F, Schütze C, Sattmann H, Litschauer M, Schmidt-Erfurth U, Hitzenberger CK. Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization. Biomed Opt Express. 2012;3(7):1670–83. https://doi.org/10.1364/BOE.3.001670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol Visual Sci. 1962;1(6):776–83. Available at: https://iovs.arvojournals.org/article.aspx?articleid=2122713.

    Google Scholar 

  4. Chedekel MR, Agin PP, Sayre RM. Photochemistry of pheomelanin: action spectrum for superoxide production. Photochem Photobiol. 1980;31(6):553–5. https://doi.org/10.1111/j.1751-1097.1980.tb03745.x.

    Article  CAS  Google Scholar 

  5. Engvall E, Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977;20(1):1–5. https://doi.org/10.1002/ijc.2910200102.

    Article  CAS  PubMed  Google Scholar 

  6. George R, Paul PG, Baskaran M, Ramesh SV, Raju P, Arvind H, McCarty C, Vijaya L. Ocular biometry in occludable angles and angle closure glaucoma: a population based survey. Br J Ophthalmol. 2003;87(4):399–402. https://doi.org/10.1136/bjo.87.4.399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harper DJ, Konegger T, Augustin M, Schützenberger K, Eugui P, Lichtenegger A, Merkle CW, Hitzenberger CK, Glösmann M, Baumann B. Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal pigment epithelium. J. Biophotonics. 2019;12(12).

    Google Scholar 

  8. Hu DN, Simon JD, Sarna T. Role of ocular melanin in ophthalmic physiology and pathology. Photochem Photobiol. 2008;84(3):639–44. https://doi.org/10.1111/j.1751-1097.2008.00316.x.

    Article  CAS  PubMed  Google Scholar 

  9. Invernizzi A, Giardini P, Cigada M, Viola F, Staurenghi G. Three-dimensional morphometric analysis of the iris by swept-source anterior segment optical coherence tomography in a Caucasian population. Invest Ophthalmol Visual Sci. 2015;56(8):4796–801. https://doi.org/10.1167/iovs.15-16483.

    Article  Google Scholar 

  10. Jacob D, Shelton RL, Applegate BE. Fourier domain pump-probe optical coherence tomography imaging of Melanin. Opt Express. 2010;18(12):12399–410. https://doi.org/10.1364/OE.18.012399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol. 2015;60(10):R211. Available at: https://iopscience.iop.org/article/10.1088/0031-9155/60/10/R211/pdf.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Krishnaswamy A, Baranoski GV. A biophysically‐based spectral model of light interaction with human skin. In Computer graphics forum 2004 Sep (Vol. 23, No. 3, pp. 331-340). Oxford, UK and Boston, USA: Blackwell Publishing, Inc. 10.1111/j.1467-8659.2004.00764.x.

    Google Scholar 

  13. Krol ES, Liebler DC. Photoprotective actions of natural and synthetic melanins. Chem Res Toxicol. 1998;11(12):1434–40. https://doi.org/10.1021/tx980114c.

    Article  CAS  PubMed  Google Scholar 

  14. WY Lam M, VG Baranoski G. A predictive light transport model for the human iris. In Computer graphics forum 2006 Sep (Vol. 25, No. 3, pp. 359-368). Oxford, UK and Boston, USA: Blackwell Publishing, Inc. https://doi.org/10.1111/j.1467-8659.2006.00955.x.

  15. Lapierre-Landry M, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng. 2018;12(1):29. https://doi.org/10.1186/s13036-018-0124-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Leeuw SM, Smit NP, Van Veldhoven M, Pennings EM, Pavel S, Simons JW, Schothorst AA. Melanin content of cultured human melanocytes and UV-induced cytotoxicity. J Photochem Photobiol. 2001;61(3):106–13. https://doi.org/10.1016/S1011-1344(01)00168-3.

    Article  Google Scholar 

  17. Maloca P, Gyger C, Hasler PW. A pilot study to compartmentalize small melanocytic choroidal tumors and choroidal vessels with speckle-noise free 1050 nm swept source optical coherence tomography (OCT choroidal “tumoropsy”). Graefe’s Arch Clin Exp Ophthalmol. 2016;254(6):1211–9. https://doi.org/10.1007/s00417-016-3270-9.

    Article  CAS  Google Scholar 

  18. d’Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia‐Borron JC, Commo S, Galván I, Ghanem G, Kenzo K, Meredith P, Pezzella A. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigm Cell Melanoma Res. 2015;28(5):520–44. https://doi.org/10.1111/pcmr.12393.

    Article  CAS  Google Scholar 

  19. Moazed K, Albert D, Smith TR. Rubeosis iridis in “pseudogliomas”. Surv Ophthalmol. 1980;25(2):85–90. https://doi.org/10.1016/0039-6257(80)90151-4.

    Article  CAS  PubMed  Google Scholar 

  20. Peterson JR, Blieden LS, Chuang AZ, Baker LA, Rigi M, Feldman RM, Bell NP. Establishing age-adjusted reference ranges for iris-related parameters in open angle eyes with anterior segment optical coherence tomography. PLoS One. 2016;11(1) https://doi.org/10.1371/journal.pone.0147760.

  21. Pijewska E, Sylwestrzak M, Gorczynska I, Tamborski S, Pawlak MA, Szkulmowski M. Blood flow rate estimation in optic disc capillaries and vessels using Doppler optical coherence tomography with 3D fast phase unwrapping. Biomed Opt Express. 2020;11(3):1336.

    Google Scholar 

  22. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7. https://doi.org/10.1136/bjo.2005.081224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, Izatt JA, Smith SD. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123(8):1053–9. https://doi.org/10.1001/archopht.123.8.1053.

    Article  PubMed  Google Scholar 

  24. Skalet A, Li Y, Lu CD, Jia Y, Lee B, Hornegger J, Fujimoto JG, Huang D. A pilot study of OCT angiography of iris melanomas. Invest Ophthalmol Visual Sci. 2015;56(7):3365. Available at: http://iovs.arvojournals.org/article.aspx?articleid=2333225.

    Google Scholar 

  25. Srinivasan K, Zebardast N, Krishnamurthy P, Kader MA, Raman GV, Rajendrababu S, Venkatesh R, Ramulu PY. Comparison of new visual disturbances after superior versus nasal/temporal laser peripheral iridotomy. Ophthalmology. 2018;125(3):345–51.

    Google Scholar 

  26. Kowalczuk C, Priestner M, Baller C, Pearson A, Cridland N, Saunders R, Wakamatsu K, Ito S. Effect of increased intracellular melanin concentration on survival of human melanoma cells exposed to different wavelengths of UV radiation. Int J Radiat Biol. 2001;77(8):883–9. https://doi.org/10.1080/09553000110062521.

    Article  CAS  PubMed  Google Scholar 

  27. Taroni P, Comelli D, Pifferi A, Torricelli A, Cubeddu R. Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications. J Biomed Opt. 2007;12(1):014021. https://doi.org/10.1117/1.2699170.

    Article  PubMed  Google Scholar 

  28. Tsai CL, Chen JC, Wang WJ. Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng. 2001;21(1):7–14. Available at: http://www.jmbe.org.tw/files/13/public/13-930-1-PB.pdf.

    Google Scholar 

  29. Zhao S, Overbeek PA. Regulation of choroid development by the retinal pigment epithelium. Mol Vis. 2001;7:277–82. Available at: http://www.molvis.org/molvis/v7/a39.

    CAS  PubMed  Google Scholar 

  30. Zonios G, Bykowski J, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol. 2001;117(6):1452–7. https://doi.org/10.1046/j.0022-202x.2001.01577.x.

    Article  CAS  PubMed  Google Scholar 

  31. https://patents.google.com/patent/US7075658B2/en.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moazed, K.T. (2020). Iris Photobiology and Scanning Modules. In: The Iris. Springer, Cham. https://doi.org/10.1007/978-3-030-45756-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45756-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45755-6

  • Online ISBN: 978-3-030-45756-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics