Skip to main content

Coenzyme Q Function in Mitochondria

  • Chapter
  • First Online:
Coenzyme Q in Aging

Abstract

In this chapter we provide a review with a focus on the function of Coenzyme Q (CoQ, ubiquinone) in mitochondria. The notion of a mobile pool of CoQ in the lipid bilayer as the vehicle of electrons from respiratory complexes has somewhat changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising Complexes I and III; in such assembly the electron transfer is thought to be mediated by direct channelling, and we provide evidence for a kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound CoQ, besides being required for electron transfer from other dehydrogenases to Complex III. CoQ bound to Complex I and to Complex III is also involved in proton translocation; although the mechanism of the Q-cycle is well established for Complex III, the involvement of CoQ in proton translocation by Complex I is still debated. This review also briefly examines some additional roles of CoQ, such as the antioxidant effect of its reduced form and its postulated action at the transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acín-Peréz R, Enriquez JA (2014) The function of respiratory supercomplexes: the plasticity model. Biochim Biophys Acta 1837:444–450

    Article  PubMed  CAS  Google Scholar 

  • Acín-Peréz R, Fernández-Silva P, Peleato ML et al (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  PubMed  CAS  Google Scholar 

  • Althoff T, Mills DJ, Popot JL et al (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo A, Navarro F, Navas P et al (1998) Ubiquinol regeneration by plasma membrane ubiquinone reductase. Protoplasma 205:107–113

    Article  CAS  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS et al (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battino M, Fahmy T, Lenaz G (1986) Determination of the critical micelle concentration of short-chain ubiquinones in model systems. Biochim Biophys Acta 851:377–384

    Article  CAS  Google Scholar 

  • Battino M, Ferri E, Villa RF et al (1990) Natural distribution and occurrence of coenzyme Q homologues. Membr Biochem 9:179–190

    Article  CAS  PubMed  Google Scholar 

  • Benard G, Faustin B, Galinier A et al (2008) Functional dynamic compartmentalization of respiratory chain intermediate substrates: implications for the control of energy production and mitochondrial diseases. Int J Biochem Cell Biol 40:1543–1554

    Google Scholar 

  • Bergamini C, Moruzzi N, Sblendido A et al (2012) A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells. PLoS One 7:e33712

    Google Scholar 

  • Bernardi P, Forte M (2007) The mitochondrial permeability transition pore. Novartis Found Symp 287:157–164; discussion 164-169

    CAS  PubMed  Google Scholar 

  • Beyer RE, Segura-Aguilar J, Di Bernardo S et al (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci U S A 93:2528–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi C, Fato R, Genova ML et al (2003) Structural and functional organization of Complex I in the mitochondrial respiratory chain. Biofactors 18:3–9

    Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G et al (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    Article  CAS  PubMed  Google Scholar 

  • Blaza JN, Serrelli R, Jones AJ et al (2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory chain supercomplexes. Proc Natl Acad Sci U S A 111:15735–15740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boumans H, Grivell LA, Berden JA (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem 273:4872–4877

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, Kerscher S, Drose S et al (2003) Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545:9–17

    Article  CAS  PubMed  Google Scholar 

  • Braun BS, Benbow U, Lloyd-Williams P et al (1986) Determination of partition coefficients of quinones by high-performance liquid chromatography. Methods Enzymol 125:119–129

    Article  CAS  PubMed  Google Scholar 

  • Capaldi RA (1982) Arrangement of proteins in the mitochondrial inner membrane. Biochim Biophys Acta 694:292–306

    Article  Google Scholar 

  • Chacko BK, Reily C, Srivastava A et al (2010) Prevention of diabetic nephropathy in Ins2(+/)-(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem J 432:9–19

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254

    Article  CAS  PubMed  Google Scholar 

  • Cordero MD, Moreno-Fernández AM, Gomez-Skarmeta JL et al (2009) Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity. Toxicol Appl Pharmacol 235:329–337

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta 1807:788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane FL, Hatefi Y, Lester RL et al (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25:220–221

    Article  CAS  PubMed  Google Scholar 

  • Crane FL, Widmer C, Lester RL et al (1959) Studies on the electron transport system. XV. Coenzyme Q (Q275) and the succinoxidase activity of the electron transport particle. Biochim Biophys Acta 31:476–489

    Google Scholar 

  • Crofts AR (2004) The Q-cycle, a personal perspective. Photosynth Res 80:223–243

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Hong S, Wilson C et al (2013) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. Biochim Biophys Acta 1827:1362–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    Article  CAS  PubMed  Google Scholar 

  • Degli Esposti M, Ngo A, Ghelli A et al (1996) The interaction of Q analogs, particularly hydroxydecyl benzoquinone (idebenone), with the respiratory complexes of heart mitochondria. Arch Biochem Biophys 330:395–400

    Article  CAS  Google Scholar 

  • Devun F, Walter L, Belliere J et al (2010) Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway to selective cell death. PLoS One 5:e11792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Bernardo S, Fato R, Casadio R et al (1998) A high diffusion coefficient for coenzyme Q10 might be related to a folded structure. FEBS Lett 426:77–80

    Article  PubMed  Google Scholar 

  • Dudkina NV, Kudryashev M, Stahlberg H et al (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci U S A 108:15196–15200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durán-Prado M, Frontiñán J, Santiago-Mora R et al (2014) Coenzyme Q10 protects human endothelial cells from β-amyloid uptake and oxidative stress-induced injury. PLoS One 9:e109223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duveau DY, Arce PM, Schoenfeld RA et al (2010) Synthesis and characterization of mitoQ and idebenone analogues as mediators of oxygen consumption in mitochondria. Bioorg Med Chem 18:6429–6441

    Article  CAS  PubMed  Google Scholar 

  • Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408:609–613

    Article  CAS  PubMed  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    Article  CAS  PubMed  Google Scholar 

  • Efremov RG, Sazanov LA (2012) The coupling mechanism of respiratory complex I - a structural and evolutionary perspective. Biochim Biophys Acta 1817:1785–1795

    Article  CAS  PubMed  Google Scholar 

  • Enriquez JA, Lenaz G (2014) Coenzyme Q and the respiratory chain: coenzyme Q pool and mitochondrial supercomplexes. Mol Syndromol 5:119–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204

    Article  PubMed  Google Scholar 

  • Estornell E, Fato R, Castelluccio C et al (1992) Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. FEBS Lett 311:107–109

    Article  CAS  PubMed  Google Scholar 

  • Fato R, Battino M, Degli Esposti M et al (1986) Determination of partition and lateral diffusion coefficients of ubiquinones by fluorescence quenching of n-(9-anthroyloxy)stearic acids in phospholipid vesicles and mitochondrial membranes. Biochemistry 25:3378–3390

    Article  CAS  PubMed  Google Scholar 

  • Fato R, Castelluccio C, Palmer G et al (1988) A simple method for the determination of the kinetic constants of membrane enzymes utilizing hydrophobic substrates: Ubiquinol cytochrome c reductase. Biochim Biophys Acta 932:216–222

    Article  CAS  PubMed  Google Scholar 

  • Fato R, Estornell E, Di Bernardo S et al (1996) Steady- state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry 35:2705–2716

    Article  CAS  PubMed  Google Scholar 

  • Flemming D, Stolpe S, Schneider D et al (2005) A possible role for iron-sulfur cluster N2 in proton translocation by the NADH: ubiquinone oxidoreductase (complex I). J Mol Microbiol Biotechnol 10:208–222

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33:169–177

    Article  CAS  PubMed  Google Scholar 

  • Galassi VV, Arantes GM (2015) Partition, orientation and mobility of ubiquinones in a lipid bilayer. Biochim Biophys Acta 1847:1560–1573

    Article  CAS  PubMed  Google Scholar 

  • Genova ML, Lenaz G (2011) New developments on the functions of coenzyme Q in mitochondria. Biofactors 37:330–354

    Article  CAS  PubMed  Google Scholar 

  • Genova ML, Lenaz G (2013) A critical appraisal of the role of respiratory supercomplexes in mitochondria. Biol Chem 394:631–639

    Article  CAS  PubMed  Google Scholar 

  • Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443

    Article  CAS  PubMed  Google Scholar 

  • Genova ML, Baracca A, Biondi A et al (2008) Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim Biophys Acta 1777:740–746

    Article  CAS  PubMed  Google Scholar 

  • Gorelick C, Lopez-Jones M, Goldberg GL et al (2004) Coenzyme Q10 and lipid-related gene induction in HeLa cells. Am J Obstet Gynecol 190:1432–1434

    Article  CAS  PubMed  Google Scholar 

  • Green DE, Tzagoloff A (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys 116:293–304

    Article  CAS  PubMed  Google Scholar 

  • Grivennikova VG, Roth R, Zakharova NV et al (2003) The mitochondrial and prokaryotic proton-translocating NADH:ubiquinone oxidoreductases: similarities and dissimilarities of the quinone-junction sites. Biochim Biophys Acta 1607:79–90

    Article  CAS  PubMed  Google Scholar 

  • Groneberg DA, Kindermann B, Althammer M et al (2005) Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int J Biochem Cell Biol 37:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Wu M, Guo R et al (2016) The architecture of the mammalian respirasome. Nature 537:639–643

    Article  CAS  PubMed  Google Scholar 

  • Gunner MR, Madeo J, Zhu Z (2008) Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers. J Bioenerg Biomembr 40:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutman M (1985) Kinetic analysis of electron flux through the quinones in the mitochondrial system. In: Lenaz G (ed) Coenzyme Q. Wiley, Chichester, pp 215–234

    Google Scholar 

  • Gutman M, Silman N (1972) Mutual inhibition between NADH oxidase and succinoxidase activities in respiring submitochondrial particles. FEBS Lett 26:207–210

    Article  CAS  PubMed  Google Scholar 

  • Gutman M, Coles CJ, Singer TP et al (1971) On the functional organization of the respiratory chain at the dehydrogenase-coenzyme Q junction. Biochemistry 10:2036–2043

    Article  CAS  PubMed  Google Scholar 

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Fowler LR et al (1962a) Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem 237:2661–2669

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Griffiths DE (1962b) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-Coenzyme Q reductase. J Biol Chem 237:1676–1680

    Article  CAS  PubMed  Google Scholar 

  • Heron C, Ragan CI, Trumpower BL (1978) The interaction between mitochondrial NADH- ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Restoration of ubiquinone-pool behavior. Biochem J 174:791–800

    Google Scholar 

  • Hochman J, Ferguson-Miller S, Schindler M (1985) Mobility in the mitochondrial electron transport chain. Biochemistry 24:2509–2516

    Article  CAS  PubMed  Google Scholar 

  • Imada I, Fujita T, Sugiyama Y et al (1989) Effects of idebenone and related compounds on respiratory activities of brain mitochondria, and on lipid peroxidation of their membranes. Arch Gerontol Geriatr 8:323–341

    Article  CAS  PubMed  Google Scholar 

  • Imada I, Sato EF, Kira Y et al (2008) Effect of CoQ homologues on reactive oxygen generation by mitochondria. Biofactors 32:41–48

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Lee JW, Okada K et al (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71

    Article  CAS  PubMed  Google Scholar 

  • Jackman MR, Willis WT (1996) Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol 270:C673–C678

    Article  CAS  PubMed  Google Scholar 

  • James AM, Cochemé HM, Smith RA et al (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295–21312

    Google Scholar 

  • Joela H, Kasa S, Lehtovuori P et al (1997) EPR, ENDOR and TRIPLE resonance and MO studies on ubiquinones (Q-n): comparison of radical anions and cations of coenzymes Q-10 and Q-6 with the model compounds Q-2 and Q-0. Acta Chem Scand 51:233–241

    Article  CAS  PubMed  Google Scholar 

  • Jones AJ, Blaza JN, Bridges HR et al (2016) A self-assembled respiratory chain that catalyzes NADH oxidation by ubiquinone-10 cycling between complex I and the alternative oxidase. Angew Chem Int Ed Engl 55:728–731

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen BM, Rasmussen HN, Rasmussen UF (1985) Ubiquinone reduction pattern in pigeon heart mitochondria. Identification of three distinct ubiquinone pools. Biochem J 229:621–629

    Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I et al (2012) Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 44:539–558

    Article  CAS  PubMed  Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I et al (2013) Metabolic control analysis of respiration in human cancer tissue. Front Physiol 4:151(1–6)

    Article  Google Scholar 

  • Kaltschmidt B, Sparna T, Kaltschmidt C (1999) Activation of NF-kappa B by reactive oxygen intermediates in the nervous system. Antioxid Redox Signal 1:129–144

    Article  CAS  PubMed  Google Scholar 

  • Kaurola P, Sharma V, Vonk A et al (2016) Distribution and dynamics of quinones in the lipid bilayer mimicking the inner membrane of mitochondria. Biochim Biophys Acta 1858:2116–2122

    Article  CAS  PubMed  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko NB, Westerhoff HV (1993) Metabolic channelling and control of the flux. FEBS Lett 320:71–74

    Article  CAS  PubMed  Google Scholar 

  • Kröger A, Klingenberg M (1973a) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358–368

    Article  PubMed  Google Scholar 

  • Kröger A, Klingenberg M (1973b) Further evidence of the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem 39:313–323

    Article  PubMed  Google Scholar 

  • Landi L, Pasquali P, Cabrini L et al (1984) On the mechanism of inhibition of NADH oxidase by ubiquinone-3. J Bioenerg Biomembr 16:153–166

    Article  CAS  PubMed  Google Scholar 

  • Lapuente-Brun E, Moreno-Loshuertos R, Acín-Peréz R et al (2013) Supercomplex assembly determines electron flux in themitochondrial electron transport chain. Science 340:1567–1570

    Article  CAS  PubMed  Google Scholar 

  • Lass A, Sohal RS (1999) Comparisons of coenzyme Q bound to mitochondrial membrane proteins among different mammalian species. Free Radic Biol Med 27:220–226

    Article  CAS  PubMed  Google Scholar 

  • Lehninger AL (1965) Bionergetics: the molecular basis of biological energy transformations. WA Benjamin Inc, New York

    Google Scholar 

  • Lenaz G (1988) Role of mobility of redox components in the inner mitochondrial membrane. J Membrane Biol 104:193–209

    Article  CAS  Google Scholar 

  • Lenaz G (1998) Quinone specificity of complex I. Biochim Biophys Acta 1364:207–221

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Fato R (1986) Is ubiquinone diffusion rate-limiting for electron transfer? J Bioenerg Biomembr 18:369–401

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs solid state electron channeling. Am J Physiol Cell Physiol 292:C1221–C1239

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2009a) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 41:1750–1772

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2009b) Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta 1787:563–573

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Daves GD, Folkers K (1968) Organic structural specificity and sites of coenzyme Q in succinoxidase and DPNH-oxidase systems. Arch Biochem Biophys 123:539–550

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Fato R, Castelluccio C et al (1994) An updating of the biochemical function of coenzyme Q in mitochondria. Mol Aspects Med 15(Suppl):S29–S36

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Bovina C, Castelluccio C et al (1997) Mitochondrial complex I defects in aging. Mol Cell Biochem 174:329–333

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Fato R, Di Bernardo S et al (1999) Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 9:87–93

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Baracca A, Barbero G et al (2010) Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochim Biophys Acta 1797:633–640

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Tioli G, Falasca AI et al (2016) Complex I function in mitochondrial supercomplexes. Biochim Biophys Acta 1857:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648

    Article  CAS  PubMed  Google Scholar 

  • Letts JA, Fiedorczuk K, Degliesposti G, Skehel M, Sazanov LA (2019) Structures of respiratory rupercomplex I+III2 reveal functional and conformational crosstalk. Mol Cell 75:1131–1146.e6

    Google Scholar 

  • Li G, Zou LY, Cao CM et al (2005) Coenzyme Q10 protects SHSY5Y neuronal cells from beta amyloid toxicity and oxygen-glucose deprivation by inhibiting the opening of the mitochondrial permeability transition pore. Biofactors 25:97–107

    Article  PubMed  Google Scholar 

  • Linnane AW, Kopsidas G, Zhang C et al (2002) Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscle. Free Radic Res 36:445–453

    Google Scholar 

  • Maranzana E, Barbero G, Falasca AI et al (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from Complex I. Antioxid Redox Signal 19:1469–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashima Y, Hiida Y, Oguchi Y (1992) Remission of Leber’s hereditary optic neuropathy with idebenone. Lancet 340:368–369

    Article  CAS  PubMed  Google Scholar 

  • McDaniel DH, Neudecker BA, Di Nardo JC et al (2005) Idebenone: a new antioxidant – Part I. Relative assessment of oxidative stress protection capacity compared to commonly known antioxidants. J Cosmet Dermatol 4:10–17

    Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR et al (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J Mol Biol 361:462–469

    Article  CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 17:942–948

    Google Scholar 

  • Mileykovskaya E, Penczek PA, Fang J et al (2012) Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy (EM). J Biol Chem 287:23095–23103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59:137–139

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sanchez S, Devars S, Lopez-Gomez F et al (1991) Distribution of control of oxidative phosphorylation in mitochondria oxidizing NAD-linked substrates. Biochim Biophys Acta 1060:284–292

    Article  CAS  PubMed  Google Scholar 

  • Mráček T, Holzerová E, Drahota Z et al (2014) ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase. Biochim Biophys Acta 1837:98–111

    Article  PubMed  CAS  Google Scholar 

  • Naderi J, Somayajulu-Nitu M, Mukerji A et al (2006) Water-soluble formulation of Coenzyme Q10 inhibits Bax-induced destabilization of mitochondria in mammalian cells. Apoptosis 11:1359–1369

    Article  CAS  PubMed  Google Scholar 

  • Nohl H, Rohr-Udilova N, Gille L et al (2005) Suppression of tumour-promoting factors in fat-induced colon carcinogenesis by the antioxidants caroverine and ubiquinone. Anticancer Res 25:2793–2800

    CAS  PubMed  Google Scholar 

  • Ohnishi T (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Salerno JC (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 579:4555–4561

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi ST, Salerno JC, Ohnishi T (2010) Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I). Biochim Biophys Acta 1797:1891–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovàdi J (1991) Physiological significance of metabolic channelling. J Theor Biol 152:135–141

    Article  PubMed  Google Scholar 

  • Ozawa T, Nishikimi M, Suzuki H et al (1987) Structure and assembly of mitochondrial electron-transfer complexes. In: Ozawa T, Papa S (eds) Bioenergetics: structure and function of energy-transducing systems. Japan Sci Soc Press, Tokyo, pp 101–119

    Google Scholar 

  • Papucci L, Schiavone N, Witort E et al (2003) Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 278:28220–28228

    Article  CAS  PubMed  Google Scholar 

  • Parenti Castelli G, Fato R, Castelluccio C et al (1987) Kinetic studies on the pool function of ubiquinone in mitochondrial systems. Chem Scr 27:161–166

    CAS  Google Scholar 

  • Park SK, Kim K, Page GP et al (2009) Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell 8:484–495

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer K, Gohil V, Stuart RA et al (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880

    Article  CAS  PubMed  Google Scholar 

  • Piccoli C, Scrima R, Boffoli D et al (2006) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plecitá-Hlavatá L, Jezek J, Jezek P (2009) Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Int J Biochem Cell Biol 41:1697–1707

    Google Scholar 

  • Quarato G, Piccoli C, Scrima R et al (2011) Variation of flux control coefficient of cytochrome c oxidase and of the other respiratory chain complexes at different values protonmotive force occurs by a threshold mechanism. Biochim Biophys Acta 1807:1114–1124

    Article  CAS  PubMed  Google Scholar 

  • Quinzii CM, Hirano M (2010) Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev 16:183–188

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragan CI, Cottingham IR (1985) The kinetics of quinone pools in electron transport. Biochim Biophys Acta 811:13–31

    Article  CAS  PubMed  Google Scholar 

  • Ragan CI, Heron C (1978) The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase – evidence for stoicheiometric association. Biochem J 174:783–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajarathnam K, Hochman J, Schindler M et al (1989) Synthesis, location, and lateral mobility of fluorescently labeled ubiquinone 10 in mitochondrial and artificial membranes. Biochemistry 28:3168–3176

    Article  CAS  PubMed  Google Scholar 

  • Rauchová H, Fato R, Drahota Z et al (1997) Steady-state kinetics of reduction of Coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria. Arch Biochem Biophys 344:235–241

    Article  PubMed  Google Scholar 

  • Redfearn ER, Pumphrey AM (1960) The kinetics of ubiquinone reactions in heart-muscle preparations. Biochem J 76:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich PR, Harper R (1990) Partition coefficients of quinones and hydroquinones and their relation to biochemical reactivity. FEBS Lett 269:139–144

    Article  CAS  PubMed  Google Scholar 

  • Rieske JS (1967) Preparation and properties of reduced coenzyme Q-cytochrome c reductase (complex III of the respiratory chain). Methods Enzymol 10:239–245

    Article  CAS  Google Scholar 

  • Ringler RL, Singer TP (1959) Studies on the mitochondrial alpha-glycerophosphate dehydrogenase. I. Reaction of the dehydrogenase with electron acceptors and the respiratory chain. J Biol Chem 234:2211–2217

    Article  CAS  PubMed  Google Scholar 

  • Rosca MG, Vazquez EJ, Kerner J et al (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeldt F, Marasco S, Lyon W et al (2005) Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. J Thorac Cardiovasc Surg 129:25–32

    Article  CAS  PubMed  Google Scholar 

  • Sahach VF, Vavilova HL, Rudyk OV et al (2007) Inhibition of mitochondrial permeability transition pore is one of the mechanisms of cardioprotective effect of coenzyme Q10. Fiziol Zh 53:35–42

    CAS  PubMed  Google Scholar 

  • Samorì B, Lenaz G, Battino M et al (1992) On coenzyme Q orientation in membranes: a linear dichroism study of ubiquinones in a model bilayer. J Membr Biol 128:193–203

    Article  PubMed  Google Scholar 

  • Sarewicz M, Osyczka A (2015) Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 95:219–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388

    Article  CAS  PubMed  Google Scholar 

  • Schäfer E, Seelert H, Reifschneider NH et al (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  PubMed  PubMed Central  Google Scholar 

  • Schägger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer C, Döring F (2010) Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes. Biofactors 36:222–228

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer C, Kitano M, Rimbach G et al (2009) Effects of ubiquinol-10 on microRNA-146a expression in vitro and in vivo. Mediators Inflamm 2009:415437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider H, Lemasters JJ, Hackenbrock CR (1982) Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes. J Biol Chem 257:10789–10793

    Article  CAS  PubMed  Google Scholar 

  • Schönfeld P, Wieckowski MR, Lebiedzińska M et al (2010) Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species. Biochim Biophys Acta 1797:929–938

    Article  PubMed  CAS  Google Scholar 

  • Schwerzmann K, Cruz-Orive LM, Eggman R et al (1986) Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study. J Cell Biol 102:97–103

    Article  CAS  PubMed  Google Scholar 

  • Seelert H, Dani DN, Dante S et al (2009) From protons to OXPHOS supercomplexes and Alzheimer’s disease: structure-dynamics-function relationships of energy-transducing membranes. Biochim Biophys Acta 1787:657–671

    Article  CAS  PubMed  Google Scholar 

  • Sherwood S, Hirst J (2006) Investigation of the mechanism of proton trasnslocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism? Biochem J 400:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinzawa-Itoh K, Shimomura H, Yanagisawa S et al (2016) Purification of active respiratory supercomplex from bovine heart mitochondria enables functional studies. J Biol Chem 291:4178–4184

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Sohet FM, Neyrinck AM, Pachikian BD et al (2009) Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol 78:1391–1400

    Article  CAS  PubMed  Google Scholar 

  • Stoner CD (1984) Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Determination of the coupling relationships between the respiratory reactions and miscellaneous observations concerning rate-limiting steps. J Bioenerg Biomembr 16:115–141

    Article  CAS  PubMed  Google Scholar 

  • Stroh A, Anderka O, Pfeiffer K et al (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279:5000–5007

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Huo X, Zhai Y et al (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Szarkowska L (1966) The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone). Arch Biochem Biophys 113:519–525

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Yamaguchi T, Shitashige M et al (1995) Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation. Biochem J 309:883–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan AK, Ramsay RR, Singer TP et al (1993) Comparison of the structures of the quinone-binding sites in beef heart mitochondria. J Biol Chem 268:19328–19333

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Sawashita J, Kubo H et al (2014) Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal 20:2606–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tocilescu MA, Zickermann V, Zwicker K et al (2010) Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta 1797:1883–1890

    Article  CAS  PubMed  Google Scholar 

  • Van Raam BJ, Sluiter W, de Wit E et al (2008) Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3:e2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanderkooi G (1978) Organization of protein and lipid components in membranes. In: Fleischer S, Hatefi Y, MacLennan D, Tzagoloff A (eds) Molecular biology of membranes. Plenum Publishing Corp, New York, pp 25–55

    Google Scholar 

  • Various authors (2015) In: Louro RO, Diaz-Moreno I (eds) Redox proteins in supercomplexes and signalosomes. CRC Press, Boca Raton

    Google Scholar 

  • Vinogradov AD (2001) Respiratory complex I: structure, redox components, and possible mechanisms of energy transduction. Biochemistry (Mosc) 66:1086–1097

    Article  CAS  Google Scholar 

  • Walter L, Nogueira V, Leverve X et al (2000) Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J Biol Chem 275:29521–29527

    Article  CAS  PubMed  Google Scholar 

  • Walter L, Miyoshi H, Leverve X et al (2002) Regulation of the mitochondrial permeability transition pore by ubiquinone analogs. A progress report. Free Radic Res 36:405–412

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hekimi S (2016) Understanding ubiquinone. Trends Cell Biol 26:367–378

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Yu CA, Kim H et al (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66

    Article  CAS  PubMed  Google Scholar 

  • Yamamura T, Otani H, Nakao Y et al (2001) Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria. Antioxid Redox Signal 3:103–112

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Ohnishi T (2001) The origin of cluster N2 of the energy-transducing NADH-quinone oxidoreductase: comparisons of phylogenetically related enzymes. J Bioenerg Biomembr 33:213–222

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM et al (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684

    Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    Article  CAS  PubMed  Google Scholar 

  • Zhu QS, Berden JA, De Vries S et al (1982) On the role of ubiquinone in the respiratory chain. Biochim Biophys Acta 680:69–79

    Article  CAS  PubMed  Google Scholar 

  • Zickermann V, Dröse S, Tocilescu MA et al (2008) Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 40:475–483

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Genova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Genova, M.L., Lenaz, G. (2020). Coenzyme Q Function in Mitochondria. In: López Lluch, G. (eds) Coenzyme Q in Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-45642-9_3

Download citation

Publish with us

Policies and ethics