Skip to main content

Extracellular Matrices

  • Chapter
  • First Online:
Technology in Practical Dermatology
  • 763 Accesses

Abstract

The skin is the largest organ in our body. The skin plays a barrier role, represents our first defense from toxic, infectious, or mechanical factors and regulates body temperature. It consists of different layers such as epidermis, dermis, and subcutaneous tissue. In the epidermal compartment, keratinocytes are arranged above the basal membrane, in a thin membranous layer composed of proteoglycans, glycoproteins, and collagen. In the dermis, there are two distinct extracellular matrix (ECM) and cell populations. Beneath the basal membrane there is the extracellular dermal matrix containing glycosaminoglycans (GAG), elastin, collagen, and cells like melanocytes, fibroblasts and endothelial cells. Skin wounds may represent a severe risk for patients, if the skin is not repaired and restored within an acceptable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol. 2011;1:3(4).

    Google Scholar 

  2. CL W, Schoneider U, Abel M, et al. Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch Dermatol Res. 2010;302:419–28.

    Article  Google Scholar 

  3. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  4. Eming S, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6:265.

    Article  Google Scholar 

  5. Brett D. A review of collagen and collagen-based wound dressings. Wounds. 2008;20(12):347–56.

    PubMed  Google Scholar 

  6. Greaves NS, Iqbal SA, Baguneid M, et al. The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen. 2013;21(2):194–210.

    Article  PubMed  Google Scholar 

  7. Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. JR Soc Interface. 2007;4(14):413–37.

    Article  CAS  Google Scholar 

  8. Schultz GS, Mast BA. Molecular analysis of the environments of healing and chronic wounds: cytokines, proteases and growth factors. Primary Intention. 1999;7:7–15.

    Google Scholar 

  9. Bermudez DM, Herdrich BJ, Xu J, et al. Impaired biomechanical properties of diabetic skin. Am J Pathol. 2011;178:2215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cook H, Stephens P, Davies K, et al. Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2, and MMP-2 activity. J Invest Dermatol. 2000;115:225–33.

    Article  CAS  PubMed  Google Scholar 

  11. Lerman OZ, Galiano RD, Armour M, et al. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003;162(1):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  13. Harding K, Kirsner R, et al. International consensus; acellular matrices for the treatment of wounds. An expert working group review. London: Wounds International, 2010.

    Google Scholar 

  14. Zhong SP, Zhang YZ. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanoblutechnol. 2010;2(5):510–25.

    Article  CAS  Google Scholar 

  15. Cen L, Liu W, Cui L, et al. Collagen tissue engineering; development of novel biomaterials and applications. Pediatr Res. 2008;63(5):492–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yang C, Hillai PJ, Biez JA, et al. The application of recombinant human collagen in tissue engineering. BiaDrugs. 2004;113(2):103–19.

    Article  Google Scholar 

  17. Lin CQ, Bissell MI. Multi-faceted regulation of cell differentiation by extracellular matrix. EASED J. 1993;7(9):737–43.

    CAS  Google Scholar 

  18. Fleck CA, Simmanb R. Modern collagen wound dressings: function and purpose. I Am Col Cercil Wound Spec. 2010;2(3):50–4.

    Google Scholar 

  19. Schanfekier U, Abel M, Wiegand C, et al. Influence of selected wound dressings on PMN elastasae in chronic wound fluid and−their antioxidative potential in vitro. Materials. 2005;26(33):6664–73.

    Google Scholar 

  20. Cullen B, Smith R, Mcculloch O, et al. Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen. 2002;10(1):16–25.

    Article  PubMed  Google Scholar 

  21. Nuutila K, Peura M, Suomela R, et al. Recombinant human collagen III gel for transplantation of autologous skin cells in porcine full-thickness wounds. J Tissue Eng Regen Med. 2015;9(12):1386–93.

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Wu I-I, Byrne M, et al. Type III collagen is crucial for collagen I abrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A. 1997;941:1852–6.

    Article  Google Scholar 

  23. Volk SW, Wang Y, Mauldin EA, et al. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs. 2011;194:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gould LJ. Topical collagen-based biomaterials for chronic wounds: rationale and clinical application. Ady Wound Care. 2016;5(1):19–31.

    Article  Google Scholar 

  25. Volk SW, Iqbal SA, Bayat A. Interactions of the extracellular matrix and progenitor cells in cutaneous wound healing. Adv Wound Care. 2013;2:261–72.

    Article  Google Scholar 

  26. Eckes B, Nischt R, Krieg T. Cell-matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair. 2010;3(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell. 2002;13(10):3546–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Velling T, Risteli J, Wennerberg K, et al. Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins aubland a2B1. J Biol Chem. 2002;277(40):377–81.

    Article  Google Scholar 

  30. Schultz GS, Ladwig G, Wysocki A. Extra cellular matrix: review of its roles in acute and chronic wounds. World Wide Wounds 2005.

    Google Scholar 

  31. Widgerow AD. Bioengineered matrices part 1: attaining structural success in biologic skin substitutes. Ann Plast Surg. 2012;68(6):568–73.

    Article  CAS  PubMed  Google Scholar 

  32. Babensee JE, Anderson JM, McIntire LV, et al. Host response to tissue engineered devices. Ady Drug Deliv Rev. 1998;33:111–39.

    Article  CAS  Google Scholar 

  33. Yukna R, Turner D, Robinson L. Variable antigenicity of lyophilized allogeneic and lyophilized xenogeneic skin in Guinea pigs. Periodontal Res. 1977;12:197–201.

    Article  CAS  Google Scholar 

  34. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gould L. Topical collagen-based biomaterials for chronic wounds: rationale and clinical application. Adv Wound Care. 2016;17:19–31.

    Article  Google Scholar 

  36. Karinen A. Aging of the skin connective tissue: how to measure the biochemical and mechanical properties of aging dermis. Photodermatol Photoimmunol Photomed. 1994;10(2):47–52.

    Google Scholar 

  37. Fettcrolf DE, Snyder RJ. Scientific and clinical support for the use of dehydrated human amnion/chorion membrane in wound management. Wounds. 2012;10:24.

    Google Scholar 

  38. Koob TJ, Lim JJ, Massee M, et al. Properties of dehydrated human amnion/chorion composite grafts: implications for wound repair and soft tissue regeneration. Biomed Mater Res Appl Biomater. 2014;102(6):1353–62.

    Article  Google Scholar 

  39. Cornwell KG, Landsman A, Jame R. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg. 2009;26(4):507–23.

    Article  PubMed  Google Scholar 

  40. McDaniel JC, Belury M, Ahijevych K, et al. Omega-3 fatty acids effect on wound healing. Wound Repair Regen. 2008;16:337–45.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Floden EW, Malak SF, Basil-Jones MM, et al. Biophysical characterization of ovine forestomach extracellular matrix biomaterials. J Biomed Mater Res B Appl Biomater. 2011;96:67–75.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest for this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingegneri, A., Romanelli, M. (2020). Extracellular Matrices. In: Fimiani, M., Rubegni, P., Cinotti, E. (eds) Technology in Practical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-45351-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45351-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45350-3

  • Online ISBN: 978-3-030-45351-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics