Skip to main content

Neurocognitive Interventions to Foster Mathematical Learning

Handbook of Cognitive Mathematics

Abstract

In our exceedingly technical world, numeracy is recognized as an essential skill to meet everyday demands of life. However, poor numeracy and severe numerical learning problems are very common in our society and imply serious obstacles in daily lives, school, or professional success. It is time to gain advantages from obtained numeracy research and neuroscientific knowledge of the recent years for affected people. First, early symbolic numerical skills have been proven being crucial for later mathematical skills and enable us to identify children at risk for mathematical learning disorders already in preschool. Second, an early support of these preschool children has the potential to enable them to catch up to the mathematical levels of their peers, facilitates school entry, school development, and prevents the development of severe math learning problems. Third, general evidence-based recommendations are given that make an intervention particularly effective for people with poor numeracy. Moreover, we highlight the neuronal changes that go along with successful numerical training. Finally, insights are provided into recent approaches to stimulate the human brain by noninvasive methods using low electrical currents open new venues to facilitate numerical learning. Although it is still unclear which factors best predict individual learning success through intervention. However, there is evidence that the earlier you intervene the better and that children with more severe numerical difficulties are rather dependent on intense and individualized interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arsalidou, M., & Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 54(3), 2382–2393.

    Article  Google Scholar 

  • Aunio, P., Hautamäki, J., & Luit, J. E. H. (2005). Mathematical thinking intervention programmes for preschool children with normal and low number sense. European Journal of Special Needs Education, 20. https://doi.org/10.1080/08856250500055578.

  • AWMF. (2018). S3-Leitlinie: Diagnostik und Behandlung der Rechenstörung. Retrieved from https://www.awmf.org/leitlinien/detail/ll/028-046.html

  • Bender, F., Brandelik, K., Jeske, K., Lipka, M., Löffler, C., Mannhaupt, G., … von Orloff, M. (2017). Die integrative Lerntherapie. Therapieform zur Behandlung von Lernstörungen. Lernen und Lernstörungen, 6, 65–73.

    Google Scholar 

  • Berger, I., Dakwar-Kawar, O., Grossman, E. S., Nahum, M., & Cohen Kadosh, R. (2019). Scaffolding the attention-deficit/hyperactivity disorder brain using random noise stimulation. medRxiv, 19005983. https://doi.org/10.1101/19005983.

  • Brunoni, A. R., Vanderhasselt, M.-A., Boggio, P. S., Fregni, F., Dantas, E. M., Mill, J. G., … Benseñor, I. M. (2013). Polarity- and valence-dependent effects of prefrontal transcranial direct current stimulation on heart rate variability and salivary cortisol. Psychoneuroendocrinology, 38(1), 58–66. https://doi.org/10.1016/j.psyneuen.2012.04.020.

  • Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafo, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews. Neuroscience, 14(5), 365–376. https://doi.org/10.1038/nrn3475.

    Article  Google Scholar 

  • Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., … Walsh, V. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. The Journal of Neuroscience, 33(37), 14899–14907. https://doi.org/10.1523/jneurosci.1692-13.2013.

  • Caviola, S., Colling, L. J., Mammarella, I. C., & Szűcs, D. (2020). Predictors of mathematics in primary school: Magnitude comparison, verbal and spatial working memory measures. Developmental Science, 23(6), e12957. https://doi.org/10.1111/desc.12957.

    Article  Google Scholar 

  • Chodura, S., Kuhn, J.-T., & Holling, H. (2015). Interventions for children with mathematical difficulties: A meta-analysis. Zeitschrift für Psychologie, 223(2), 129–144.

    Article  Google Scholar 

  • Clarke, B., Doabler, C. T., Smolkowski, K., Turtura, J., Kosty, D., Kurtz-Nelson, E., … Baker, S. K. (2019). Exploring the relationship between initial mathematics skill and a kindergarten mathematics intervention. Exceptional Children, 85(2), 129–146. https://doi.org/10.1177/0014402918799503.

  • Clemens, B., Jung, S., Zvyagintsev, M., Domahs, F., & Willmes, K. (2013). Modulating arithmetic fact retrieval: A single-blind, sham-controlled tDCS study with repeated fMRI measurements. Neuropsychologia, 51(7), 1279–1286. https://doi.org/10.1016/j.neuropsychologia.2013.03.023.

    Article  Google Scholar 

  • Clements, D. H., & Sarama, J. (2020). Early childhood mathematics intervention. Science, 333(6045), 968–970.

    Article  Google Scholar 

  • Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long lasting changes in numerical competence. Current Biology, 20, 2016–2020.

    Article  Google Scholar 

  • Cohen Kadosh, R., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22, R108–R111.

    Article  Google Scholar 

  • Davis, N. J. (2014). Transcranial stimulation of the developing brain: A plea for extreme caution. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00600.

  • Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508. https://doi.org/10.3389/fpsyg.2016.00508.

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., & Gilbert, J. K. (2019). Does the severity of students’ pre-intervention math deficits affect responsiveness to generally effective first-grade intervention? Exceptional Children, 85(2), 147–162. https://doi.org/10.1177/0014402918782628.

    Article  Google Scholar 

  • Gallit, F., Wyschkon, A., Poltz, N., Moraske, S., Kucian, K., von Aster, M. G., & Esser, G. (2018). Henne oder Ei: Reziprozität mathematischer Vorläufer und Vorhersage des Rechnens. Lernen und Lernstörungen, 7(2), 81–92.

    Article  Google Scholar 

  • Göbel, S. M., Watson, S. E., Lervag, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science. https://doi.org/10.1177/0956797613516471.

  • Grabner, R. H., Rütsche, B., Ruff, C. C., & Hauser, T. U. (2015). Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning. European Journal of Neuroscience, 42(1), 1667–1674. https://doi.org/10.1111/ejn.12947.

    Article  Google Scholar 

  • Grond, U., von Aster, M. G., O’Gorman, R., Martin, E., & Kucian, K. (2014). How does the mathematical brain develop? A longitudinal fMRI study in children with and without dyscalculia. Paper presented at the EARLI, Meeting of the SIG 22 neuroscience and education.

    Google Scholar 

  • Haberstroh, S., & Schulte-Körne, G. (2019). The diagnosis and treatment of dyscalculia. Dtsch Arztebl International, 116(7), 107–114.

    Google Scholar 

  • Harty, S., & Cohen Kadosh, R. (2019). Suboptimal engagement of high-level cortical regions predicts random-noise-related gains in sustained attention. Psychological Science, 30(9), 1318–1332. https://doi.org/10.1177/0956797619856658.

    Article  Google Scholar 

  • Hauser, T. U., Rotzer, S., Grabner, R. H., Mérillat, S., & Jäncke, L. (2013). Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial direct current stimulation (tDCS). Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00244.

  • Heine, A., Engl, V., Thaler, V. M., Fussenegger, B., & Jacobs, A. M. (2012). Neuropsychologie von Entwicklungsstörungen schulischer Fertigkeiten. Göttingen: Hogrefe.

    Google Scholar 

  • Huber, C. (2009). Gemeinsam einsam? Empirische Befunde und praxisrelevante Ableitungen zur sozialen Integration von Schülern mit Sonderpädagogischem Förderbedarf im Gemeinsamen Unterricht. Zeitschrift für Heilpädagogik, 7, 242–248.

    Google Scholar 

  • Huber, E., Donnelly, P. M., Rokem, A., & Yeatman, J. D. (2018). Rapid and widespread white matter plasticity during an intensive reading intervention. Nature Communications, 9(1), 2260. https://doi.org/10.1038/s41467-018-04627-5.

    Article  Google Scholar 

  • Ironside, M., O’Shea, J., Cowen, P. J., & Harmer, C. J. (2016). Frontal cortex stimulation reduces vigilance to threat: Implications for the treatment of depression and anxiety. Biological Psychiatry, 79(10), 823–830.

    Article  Google Scholar 

  • Ise, E., Dolle, K., Pixner, S., & Schulte-Körne, G. (2012). Effektive Förderung rechenschwacher Kinder: Eine Metaanalyse. Kindheit und Entwicklung, 21(3), 181–192.

    Article  Google Scholar 

  • Iuculano, T., & Cohen Kadosh, R. (2013). The mental cost of cognitive enhancement. The Journal of Neuroscience, 33(10), 4482–4486. https://doi.org/10.1523/jneurosci.4927-12.2013.

    Article  Google Scholar 

  • Iuculano, T., & Cohen Kadosh, R. (2014). Preliminary evidence for performance enhancement following parietal lobe stimulation in developmental dyscalculia. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00038.

  • Iuculano, T., Rosenberg-Lee, M., Richardson, J., Tenison, C., Fuchs, L., Supekar, K., & Menon, V. (2015). Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities. Nature Communications, 6, 8453. https://doi.org/10.1038/ncomms9453. https://www.nature.com/articles/ncomms9453#supplementary-information.

    Article  Google Scholar 

  • Jolles, D., Ashkenazi, S., Kochalka, J., Evans, T., Richardson, J., Rosenberg-Lee, M., … Menon, V. (2016). Parietal hyper-connectivity, aberrant brain organization, and circuit-based biomarkers in children with mathematical disabilities. Developmental Science, 19(4), 613–631. https://doi.org/10.1111/desc.12399.

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. https://doi.org/10.1037/a0014939.

    Article  Google Scholar 

  • Jordan, N. C., Glutting, J., Dyson, N., Hassinger-Das, B., & Irwin, C. (2012). Building Kindergartners’ number sense: A randomized controlled study. Journal of Educational Psychology, 104(3), 647–660. https://doi.org/10.1037/a0029018.

    Article  Google Scholar 

  • Klein, E., Mann, A., Huber, S., Bloechle, J., Willmes, K., Karim, A. A., … Moeller, K. (2013). Bilateral bi-cephalic Tdcs with two active electrodes of the same polarity modulates bilateral cognitive processes differentially. PLoS One, 8(8), e71607. https://doi.org/10.1371/journal.pone.0071607.

  • Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. Journal of the Canadian Academy of Child and Adolescent Psychiatry = Journal de l’Academie canadienne de psychiatrie de l’enfant et de l’adolescent, 20(4), 265–276.

    Google Scholar 

  • Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95–103. https://doi.org/10.1016/j.learninstruc.2012.12.001.

    Article  Google Scholar 

  • Krajewski, K. (2008). Vorschulische Förderung bei beeinträchtigter Entwicklung mathematischer Kompetenzen. In J. Borchert, B. Hartke, & P. Jogschies (Eds.), Frühe Förderung entwicklungs-auffälliger Kinder und Jugendlicher. Stuttgart: Kohlhammer.

    Google Scholar 

  • Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103(4), 516–531.

    Article  Google Scholar 

  • Krajewski, K., Nieding, G., & Schneider, W. (2013). Mengen, zählen, Zahlen: Die Welt der Mathematik verstehen. Göttingen: Hogrefe.

    Google Scholar 

  • Krause, B., & Cohen Kadosh, R. (2013). Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Developmental Cognitive Neuroscience, 6(0), 176–194. https://doi.org/10.1016/j.dcn.2013.04.001.

    Article  Google Scholar 

  • Kroesbergen, E., & Van Luit, J. E. H. (2003). Mathematics interventions for children with special educational needs. Remedial and Special Education, 24(2), 97–114.

    Article  Google Scholar 

  • Kucian, K. (2016). Developmental dyscalculia and the brain. In D. B. Berch, D. Geary, K. Mann Koepke, D. Geary, & K. Mann Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (Vol. 2, pp. 165–193). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schonmann, C., Plangger, F., … von Aster, M. G. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782–795. https://doi.org/10.1016/j.neuroimage.2011.01.070.

  • Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287–294.

    Article  Google Scholar 

  • Landerl, K., Vogel, S., & Kaufmann, L. (2017). Dyskalkulie (3rd ed.). München: Ernst Reinhardt Verlag.

    Google Scholar 

  • Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line – An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74–84. https://doi.org/10.1016/j.tine.2013.06.005.

    Article  Google Scholar 

  • Lipka, R., Ahlers, E., Reed, T. L., Karstens, M. I., Nguyen, V., Bajbouj, M., & Cohen Kadosh, R. (2021). Resolving heterogeneity in transcranial electrical stimulation efficacy for attention deficit hyperactivity disorder. Experimental Neurology, 337, 113586. https://doi.org/10.1016/j.expneurol.2020.113586.

    Article  Google Scholar 

  • Looi, C. Y., & Cohen Kadosh, R. (2016). Brain stimulation, mathematical, and numerical training: Contribution of core and noncore skills. Progress in Brain Research, 227, 353–388. https://doi.org/10.1016/bs.pbr.2016.04.009.

    Article  Google Scholar 

  • Looi, C. Y., Duta, M., Brem, A.-K., Huber, S., Nuerk, H.-C., & Cohen Kadosh, R. (2016). Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Scientific Reports, 6, 22003. https://doi.org/10.1038/srep22003. http://www.nature.com/articles/srep22003#supplementary-information.

    Article  Google Scholar 

  • Looi, C. Y., Lim, J., Sella, F., Lolliot, S., Duta, M., Avramenko, A. A., & Cohen Kadosh, R. (2017). Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Scientific Reports, 7(1), 4633. https://doi.org/10.1038/s41598-017-04649-x.

    Article  Google Scholar 

  • Malofeeva, E. V. (2005). Meta-analysis of mathematics instruction with young children. Indiana: Universtiy of Notre Damen.

    Google Scholar 

  • McCaskey, U., von Aster, M. G., Maurer, U., Martin, E., O’Gorman Tuura, R., & Kucian, K. (2017). Longitudinal brain development of numerical skills in typically developing children and children with developmental dyscalculia. Frontiers in Human Neuroscience, 11, 629. https://doi.org/10.3389/fnhum.2017.00629.

    Article  Google Scholar 

  • Michels, L., O’Gorman, R., & Kucian, K. (2018). Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention. Developmental Cognitive Neuroscience, 30, 291–303. https://doi.org/10.1016/j.dcn.2017.03.005.

    Article  Google Scholar 

  • Missall, K. N., Mercer, S. H., Martínez, R. S., & Casebeer, D. (2012). Concurrent and longitudinal patterns and trends in performance on early numeracy curriculum-based measures in kindergarten through third grade. Assessment for Effective Intervention, 37(2), 95–106. https://doi.org/10.1177/1534508411430322.

    Article  Google Scholar 

  • Mononen, R., Aunio, P., Koponen, T., & Aro, M. (2014). A review of early numeracy interventions for children at risk in mathematics. International Journal of Early Childhood Special Education, 6(1), 25–54.

    Article  Google Scholar 

  • Moraske, S., Wyschkon, A., Poltz, N., Kohn, J., Kucian, K., von Aster, M. G., & Esser, G. (2019). Indizierte Prävention von Rechenschwächen im Vorschulalter: Effekte bis Klasse 3. Lernen und Lernstörungen, 8(3), 141–153.

    Article  Google Scholar 

  • Morsanyi, K., van Bers, B. M. C. W., McCormack, T., & McGourty, J. (2018). The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school children. British Journal of Psychology, 109(4), 917–940.

    Article  Google Scholar 

  • Mosbacher, J. A., Brunner, C., Nitsche, M. A., & Grabner, R. H. (2020). Effects of anodal tDCS on arithmetic performance and electrophysiological activity. Frontiers in Human Neuroscience, 14(17). https://doi.org/10.3389/fnhum.2020.00017.

  • Polania, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience, 21(2), 174–187. https://doi.org/10.1038/s41593-017-0054-4.

    Article  Google Scholar 

  • Popescu, T., Krause, B., Terhune, D. B., Twose, O., Page, T., Humphreys, G., & Cohen Kadosh, R. (2016). Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task. Neuropsychologia, 81, 255–264. https://doi.org/10.1016/j.neuropsychologia.2015.12.028.

    Article  Google Scholar 

  • Powell, S. R., Cirino, P. T., & Malone, A. S. (2017). Child-level predictors of responsiveness to evidence-based mathematics intervention. Exceptional Children, 83(4), 359–377. https://doi.org/10.1177/0014402917690728.

    Article  Google Scholar 

  • Rademacher, J., Lehmann, W., Quaiser-Pohl, C., Günther, A., & Trautewig, N. (2009). Mathematik im Vorschulalter. Göttingen: Vandenhoeck & Ruprecht.

    Google Scholar 

  • Räsänen, P., Käser, T., Wilson, A., von Aster, M. G., Maslov, O., & Maslova, U. (2015). Assistive technology for supporting learning numeracy. In B. O’Neill & A. Gillespie (Eds.), Assistive technology for cognition: A handbook for clinicians and developers (pp. 112–127). Glasgow: Psychology Press.

    Google Scholar 

  • Reed, T., & Cohen Kadosh, R. (2018). Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. Journal of Inherited Metabolic Disease, 41(6), 1123–1130.

    Article  Google Scholar 

  • Rosenberg-Lee, M., Ashkenazi, S., Chen, T., Young, C. B., Geary, D. C., & Menon, V. (2014). Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia. Developmental Science, 1–22.

    Google Scholar 

  • Rubinsten, O. (2009). Co-occurrence of developmental disorders: The case of developmental dyscalculia. Cognitive Development, 24(4), 362–370.

    Article  Google Scholar 

  • Sanchez-Leon, C. A., Sanchez-Lopez, A., Gomez-Climent, M. A., Cordones, I., Cohen Kadosh, R., & Marquez-Ruiz, J. (2021). Impact of chronic transcranial Random Noise Stimulation (tRNS) on GABAergic and glutamatergic activity markers in the prefrontal cortex of juvenile mice. Progress in Brain Research, 264, 323–341. https://doi.org/10.1101/2020.09.04.282889.

  • Santarnecchi, E., Brem, A.-K., Levenbaum, E., Thompson, T., Cohen Kadosh, R., & Pascual-Leone, A. (2015). Enhancing cognition using transcranial electrical stimulation. Current Opinion in Behavioral Sciences, 4, 171–178. https://doi.org/10.1016/j.cobeha.2015.06.003.

    Article  Google Scholar 

  • Santos, F. H., Mosbacher, J. A., Menghini, D., Rubia, K., Grabner, R. H., & Cohen Kadosh, R. (2021). Effects of transcranial stimulation in developmental neurocognitive disorders: A critical appraisal. Progress in Brain Research, 264, 1–40. https://doi.org/10.1016/bs.pbr.2021.01.012.

  • Sarkar, A., & Cohen Kadosh, R. (2016). Transcranial electrical stimulation and numerical cognition. Canadian Journal of Experimental Psychology, 70(1), 41–58. https://doi.org/10.1037/cep0000064.

    Article  Google Scholar 

  • Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. The Journal of Neuroscience, 34(50), 16605–16610. https://doi.org/10.1523/jneurosci.3129-14.2014.

    Article  Google Scholar 

  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372.

    Article  Google Scholar 

  • Schroeder, P. A., Dresler, T., Bahnmueller, J., Artemenko, C., Cohen Kadosh, R., & Nuerk, H.-C. (2017). Cognitive enhancement of numerical and arithmetic capabilities: A mini-review of available transcranial electric stimulation studies. Journal of Cognitive Enhancement, 1(1), 39–47. https://doi.org/10.1007/s41465-016-0006-z.

    Article  Google Scholar 

  • Schulz, F., Wyschkon, A., Gallit, F., Poltz, N., Moraske, S., Kucian, K., … Esser, G. (2018). Rechenprobleme bei Grundschulkindern: Persistenz und Schulerfolg nach fünf Jahren. Lernen und Lernstörungen, 7(2), 67–80.

    Google Scholar 

  • Shackman, A. J., McMenamin, B. W., Maxwell, J. S., Greischar, L. L., & Davidson, R. J. (2009). Right dorsolateral prefrontal cortical activity and behavioral inhibition. Psychological Science, 20(12), 1500–1506. https://doi.org/10.1111/j.1467-9280.2009.02476.x.

    Article  Google Scholar 

  • Shalev, R. S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., & Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34(1), 59–65.

    Article  Google Scholar 

  • Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology, 47(2), 121–125.

    Article  Google Scholar 

  • Sheffield, J. G., Raz, G., Sella, F., & Cohen Kadosh, R. (2020). How can noise alter neurophysiology in order to improve human behaviour? A combined tRNS and EEG study. bioRxiv, 2020.2001.2009.900118. https://doi.org/10.1101/2020.01.09.900118.

  • Simonsmeier, B. A., Grabner, R. H., Hein, J., Krenz, U., & Schneider, M. (2018). Electrical brain stimulation (tES) improves learning more than performance: A meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 171–181. https://doi.org/10.1016/j.neubiorev.2017.11.001.

    Article  Google Scholar 

  • Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., … Cohen Kadosh, R. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23(11), 987–992.

    Google Scholar 

  • Stanovich, K. E. (1986). Matthew effects in Reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360–407.

    Article  Google Scholar 

  • Stevens, E. A., Rodgers, M. R., & Powell, S. R. (2018). Mathematics interventions for upper elementary and secondary students: A meta-analysis of research. Remedial and Special Education, 39(6), 327–340.

    Article  Google Scholar 

  • Supekar, K., Iuculano, T., Chen, L., & Menon, V. (2015). Remediation of childhood math anxiety and associated neural circuits through cognitive tutoring. Journal of Neuroscience, 35(36), 12574–12583. https://doi.org/10.1523/JNEUROSCI.0786-15.2015.

    Article  Google Scholar 

  • Szkudlarek, E., & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language Learning and Development, 13(2), 171–190. https://doi.org/10.1080/15475441.2016.1263573.

    Article  Google Scholar 

  • Toll, S. W., Kroesbergen, E. H., & Van Luit, J. E. (2016). Visual working memory and number sense: Testing the double deficit hypothesis in mathematics. The British Journal of Educational Psychology, 86(3), 429–445. https://doi.org/10.1111/bjep.12116.

    Article  Google Scholar 

  • van Bueren, N. E. R., Reed, T. L., Nguyen, V., Sheffield, J. G., van der Ven, S. H. G., Osborne, M. A., … Cohen Kadosh, R. (2021). Personalized closed-loop brain stimulation for effective Neurointervention across participants. Journal bioRxiv. 2021.2003.2018.436018. https://doi.org/10.1101/2021.03.18.436018%.

  • von Aster, M., Kaufman, A. S., McCaskey, U., & Kucian, K. (in press). Rechenstörungen im Kindes- und Jugendalter. In J. Fegert, F. Resch, P. Plener, M. Kraess, M. Döpfner, K. Konrad, & T. Legenbauer (Eds.), Psychiatrie und Psychotherapie des Kindes- und Jugendalters. Heidelberg: Springer.

    Google Scholar 

  • Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66(1), 173–196. https://doi.org/10.1146/annurev-psych-010814-015104.

    Article  Google Scholar 

  • WHO. (2009). International statistical classification of diseases and related health problems (The) ICD-10. 2008 edition; Chapter V: Mental and behavioral disorders (F81.2). Geneva: World Health Organization.

    Google Scholar 

  • Xin, Y. P., Jitendra, A., & Deatline-Buchman, A. (2005). Effects of mathematical word problem solving instruction on middle school students with learning problems. Journal of Special Education, 39, 181–192. https://doi.org/10.1177/00224669050390030501.

    Article  Google Scholar 

  • Zacharopoulos, G., Sella, F., & Cohen Kadosh, R. (2021). The impact of a lack of mathematical education on brain development and future attainment. Proceedings of the National Academy of Sciences, 118(24), e2013155118. https://doi.org/10.1073/pnas.2013155118.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Kucian .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kucian, K., Cohen Kadosh, R. (2021). Neurocognitive Interventions to Foster Mathematical Learning. In: Danesi, M. (eds) Handbook of Cognitive Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-44982-7_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44982-7_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44982-7

  • Online ISBN: 978-3-030-44982-7

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Neurocognitive Interventions to Foster Mathematical Learning
    Published:
    23 April 2022

    DOI: https://doi.org/10.1007/978-3-030-44982-7_30-2

  2. Original

    Neurocognitive Interventions to Foster Mathematical Learning
    Published:
    16 March 2022

    DOI: https://doi.org/10.1007/978-3-030-44982-7_30-1