Skip to main content

In Situ Detection of miRNAs in Senescent Cells in Archival Material

  • Chapter
  • First Online:
Senolytics in Disease, Ageing and Longevity

Abstract

The detection of senescent cells has been challenging. We have recently developed a novel hybrid histo-/immunohisto-chemical method that can bypass several constraints of detection of senescent cells. It is based on the development of a novel reagent called GL13 (SenTraGorTM) that binds lipofuscin, a non-degradable metabolic by-product that is known as a hallmark of senescence. This chapter provides a unique approach to detect formalin fixed paraffin embedded tissues miRNAs in senescent GL13-reactive cells in routine. Given the significant role of miRNAs in senescent programs, this approach enables for the first time to monitor miRNAs in the context of senescence in situ in archival material. Notably, this assay improves our capacity to detect in vivo senescent cells which favors rationalization of senotherapeutic drugs. Although these agents are in early clinical trials, their introduction in routine practice will transform healthcare as we know it, bringing to the fore the necessity for precise detection of senescent cells in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmohsen K, Gorospe M (2015) Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA 6(6):615–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allsopp RC, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszek MA, Shay JW et al (1995) Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 220:194–200

    Google Scholar 

  • Bischof O, Martínez-Zamudio RI (2015) MicroRNAs and lncRNAs in senescence: a re-view. IUBMB Life 67(4):255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi J (1997) The biology of replicative senescence. Eur J Cancer Part A 33(5):703–709

    Article  CAS  Google Scholar 

  • Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571(7764):183–192

    Article  CAS  PubMed  Google Scholar 

  • Childs BG, Baker DJ, Kirkland JL, Campisi J, Deursen JM (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15(11):1139–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooks T, Theodorou SD, Paparouna E, Rizou SV, Myrianthopoulos V, Gorgoulis VG et al (2019) Immunohisto(cyto)chemistry: an old time classic tool driving modern oncological therapies. Histol Histopathol 34(4):335–352

    PubMed  Google Scholar 

  • Debacq-Chainiaux F, Ben Ameur R, Bauwens E, Dumortier E, Toutfaire M (2016) Toussaint O Stress-Induced (Premature) senescence, 243–262

    Google Scholar 

  • Disayabutr S, Kim EK, Cha SI, Green G, Naikawadi RP, Jones KD et al (2016) MIR-34 MIRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PLoS ONE 11(6):1–15

    Article  Google Scholar 

  • Evangelou K, Gorgoulis VG (2017) Sudan black b, the specific histochemical stain for lipofuscin: a novel method to detect senescent cells. Methods Mol Biol 1534:111–119

    Article  CAS  PubMed  Google Scholar 

  • Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D et al (2017) Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16(1):192–197

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22(6):816–827

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C et al (2019) Cellular senescence: defining a path forward. Cell 179(4):813–827

    Article  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(7):585–621

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lowe SW, Hannon GJ (2007) MicroRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nat Rev Cancer 7(11):819–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD (2017) The clinical potential of senolytic drugs. J Am Geriatr Soc 65(10):2297–2301

    Article  PubMed  PubMed Central  Google Scholar 

  • Komseli ES, Pateras IS, Krejsgaard T, Stawiski K, Rizou SV, Polyzos A et al (2018) A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. BMC Genom 19(1):1–22

    Article  Google Scholar 

  • Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225(4):951–960

    Article  CAS  PubMed  Google Scholar 

  • Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K(2018) Senescence-associated microRNAs. In: International review of cell and molecular biology, vol 334, 1st edn. Elsevier Inc, pp 1–26

    Google Scholar 

  • Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482–496

    Article  PubMed  Google Scholar 

  • Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA et al (2019) Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 193:31–49

    Article  CAS  PubMed  Google Scholar 

  • Vester B, Wengel J (2004) LNA (Locked Nucleic Acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42):13233–13241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd, UK and NKUA-SARG grants No 70/3/8916, 70/3/12128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis G. Gorgoulis .

Editor information

Editors and Affiliations

Ethics declarations

The authors wish to declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pateras, I.S. et al. (2020). In Situ Detection of miRNAs in Senescent Cells in Archival Material. In: Muñoz-Espin, D., Demaria, M. (eds) Senolytics in Disease, Ageing and Longevity. Healthy Ageing and Longevity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-44903-2_8

Download citation

Publish with us

Policies and ethics