Skip to main content

Interactions of Nanoenabled Agrochemicals with Soil Microbiome

  • Chapter
  • First Online:
Nanopesticides

Abstract

Soil is a dynamic, physically, spatially, and temporally heterogeneous but well-organized, three-dimensional porous matrix mixing mineral and organic matter and living organisms. Among them, soil microbiota constitutes a reservoir in which plants select a specific microbiome, contributing to their growth and their health. Microbes in soil also contribute to many ecosystemic services in agrosystems, as the recycling of major nutrients in the soil ecosystem (carbon, nitrogen, phosphorus, sulfur…).

Nanoagrochemicals are active substances based on nanotechnologies and nanoformulations to improve the characteristics and properties of active molecules as pesticides for agronomy purposes, e.g., biocides, herbicides but also nutrients. Nanotechnologies have burst into agronomy with a potential for innovation in order to improve the efficiency of pesticides, nutrients, their delivery and thus contribute to the reduction of inputs in agriculture. However, the impact of these nanopesticides on the soil microbiota as non-target organism remains underestimated up to now.

The chapter reviews the approaches and trends in the evaluation of nanopesticides implications on soil microbiota, focusing on copper- and silver-based nanoparticles as pesticides or on formulation or nanocarriers of conventional pesticides. By confronting the current knowledge and comparing methodologies, the potential and the pitfalls to overcome are discussed, together with future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA (2014) Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol 48:12561–12568

    Article  CAS  PubMed  Google Scholar 

  • Adisa IO, Pullagurala VLR, Peralta-Videa JR, Dimkpa CO, Elmer WH, Gardea-Torresdey JL, White JC (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano 6:2002–2030

    Article  CAS  Google Scholar 

  • Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VE, Hammer EC (2018) Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J 12:312–319

    Article  PubMed  Google Scholar 

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896

    Article  Google Scholar 

  • Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52:1908–1918

    Article  CAS  PubMed  Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Prasad MNN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17

    Article  CAS  PubMed  Google Scholar 

  • Bart S, Pelosi C, Barraud A, Péry ARR, Cheviron N, Grondin V, Mougin C, Crouzet O (2019) Earthworms mitigate pesticide effects on soil microbial activities. Front Microbiol 10:1535. https://www.frontiersin.org/articles/10.3389/fmicb.2019.01535/full. Accessed 22 Jan 2020

  • Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Camara MC, Campos EVR, Monteiro RA, Do Espirito Santo Pereira A, De Freitas Proença PL, Fraceto LF (2019) Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J Nanobiotechnol 17:100

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  • Chariou PL, Dogan AB, Welsh AG, Saidel GM, Baskaran H, Steinmetz NF (2019) Soil mobility of synthetic and virus-based model nanopesticides. Nat Nanotechnol 14:712–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q-L, Zhu D, An X-L, Ding J, Zhu Y-G, Cui L (2019) Does nano silver promote the selection of antibiotic resistance genes in soil and plant? Environ Int 128:399–406

    Article  CAS  PubMed  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Brink N, Van den Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    Article  CAS  Google Scholar 

  • Driouich A, Smith C, Ropitaux M, Chambard M, Boulogne I, Bernard S, Follet-Gueye M-L, Vicré M, Moore J (2019) Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol Rev Camb Philos Soc 94:1685–1700

    Article  PubMed  Google Scholar 

  • Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12:789–799

    Article  CAS  Google Scholar 

  • Fraceto LF, Grillo R, De Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://www.frontiersin.org/articles/10.3389/fenvs.2016.00020/full. Accessed 16 Jan 2020

  • García-Ruiz R, Ochoa V, Hinojosa MB, Carreira JA (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol Biochem 40:2137–2145

    Article  CAS  Google Scholar 

  • Grün A-L, Straskraba S, Schulz S, Schloter M, Emmerling C (2018) Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J Environ Sci 69:12–22

    Article  CAS  Google Scholar 

  • Grün A-L, Manz W, Kohl YL, Meier F, Straskraba S, Jost C, Drexel R, Emmerling C (2019) Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ Sci Eur 31:15

    Article  CAS  Google Scholar 

  • Guilger M, Pasquoto-Stigliani T, Bilesky-Jose N, Grillo R, Abhilash PC, Fraceto LF, Lima R (2017) Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci Rep 7:44421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Takeuchi S, Mitsunobu S, Ok Y-S (2017) Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag. J Hazard Mater 322:318–324

    Article  CAS  PubMed  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    Google Scholar 

  • Hawes MC, Curlango-Rivera G, Xiong Z, Kessler JO (2012) Roles of root border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA ‘trapping’. Plant Soil 355:1–16

    Article  CAS  Google Scholar 

  • Hawes M, Allen C, Turgeon BG, Curlango-Rivera G, Minh TT, Huskey DA, Xiong Z (2016) Root border cells and their role in plant defense. Annu Rev Phytopathol 54:143–161

    Article  CAS  PubMed  Google Scholar 

  • He X, Deng H, Hwang H (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Article  PubMed  CAS  Google Scholar 

  • Herren CM, McMahon KD (2018) Keystone taxa predict compositional change in microbial communities. Environ Microbiol 20:2207–2217

    Article  PubMed  Google Scholar 

  • Hugerth LW, Andersson AF (2017) Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol 8:1561

    Article  PubMed  PubMed Central  Google Scholar 

  • Hund-Rinke K, Hümmler A, Schlinkert R, Wege F, Broll G (2019) Evaluation of microbial shifts caused by a silver nanomaterial: comparison of four test systems. Environ Sci Eur 31:86

    Article  CAS  Google Scholar 

  • Judy JD, McNear Jr DH, Chen C, Lewis RW, Tsyusko OV, Bertsch PM, Rao W, Stegemeier J, Lowry GV, McGrath SP, Durenkamp M, Unrine J (2015) Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environ Sci Technol 49(14):8751–8758

    Google Scholar 

  • Jung J-H, Kim S-W, Min J-S, Kim Y-J, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  PubMed  Google Scholar 

  • Karaca A, Cetin SC, Turgay OC, Kizilkaya R (2011) Soil enzymes as indication of soil quality. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, p 119–148 https://doi.org/10.1007/978-3-642-14225-3_7. Accessed 16 Jan 2020

  • Karpouzas DG, Tsiamis G, Trevisan M, Ferrari F, Malandain C, Sibourg O, Martin-Laurent F (2016) “LOVE TO HATE” pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms. Environ Sci Pollut Res Int 23:18947–18951

    Article  CAS  PubMed  Google Scholar 

  • Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:pii: E444

    Article  CAS  Google Scholar 

  • Kumar R, Nair KK, Alam MI, Gogoi R, Singh PK, Srivastava C, Gopal M, Goswami A (2015) Development and quality control of nanohexaconazole as an effective fungicide and its biosafety studies on soil nitifiers. J Nanosci Nanotechnol 15:1350–1356

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim K-H (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153

    Article  CAS  PubMed  Google Scholar 

  • Kunickis SH, Gilliam JW, Evans RO, Dukes M (2010) Soil characteristics and their role in developing conditions favorable for denitrification. In: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Division Symposium 22 Management of landscapes for the future, Brisbane, 1–6 August 2010, pp 34–37

    Google Scholar 

  • Kurenbach B, Gibson PS, Hill AM, Bitzer AS, Silby MW, Godsoe W, Heinemann JA (2017) Herbicide ingredients change Salmonella enterica sv. Typhimurium and Escherichia coli antibiotic responses. Microbiology 163:1791–1801

    Google Scholar 

  • Lederberg J, McCray AT (2001) ‘Ome Sweet ‘Omics–a genealogical treasury of words. Scientist 15(7):8. https://link.galegroup.com/apps/doc/A73535513/AONE?sid=lms. Accessed 16 Jan 2020.

  • Lensi R, Clays-Josserand A, Jocteur ML (1995) Denitrifiers and denitrifying activity in size fractions of a mollisol under permanent pasture and continuous cultivation. Soil Biol Biochem 27:61–69

    Article  CAS  Google Scholar 

  • Liné C, Larue C, Flahaut E (2017) Carbon nanotubes: impacts and behaviour in the terrestrial ecosystem—a review. Carbon 123:767–785

    Article  CAS  Google Scholar 

  • Liu W, Yao J, Cai M, Chai H, Zhang C, Sun J, Chandankere R, Masakorala K (2014) Synthesis of a novel nanopesticide and its potential toxic effect on soil microbial activity. J Nanopart Res 16:2677

    Article  CAS  Google Scholar 

  • Lo C-C (2010) Effect of pesticides on soil microbial community. J Environ Sci Health Part B 45:348–359

    Article  CAS  Google Scholar 

  • Lovelock JE (1993) The soil as a model for the Earth. Geoderma 57:213–215

    Article  Google Scholar 

  • Lu J, Wang Y, Jin M, Yuan Z, Bond P, Guo J (2020) Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res 169:115229

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zilles JL, Kent AD (2019) An evaluation of primers for detecting denitrifiers via their functional genes. Environ Microbiol 21:1196–1210

    Article  CAS  PubMed  Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, de Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:1–15

    Article  CAS  Google Scholar 

  • Millardet A, Gayon U, Schneiderhan FJ (1933) The discovery of Bordeaux mixture. Three papers: I. Treatment of mildew and rot. II. Treatment of mildew with copper sulphate and lime mixture. III. Concerning the history of the treatment of mildew with copper sulphate. American Phytopathological Society, Ithaca

    Google Scholar 

  • OCDE 216 (2000) Test No. 216: Soil microorganisms: nitrogen transformation test. https://doi.org/10.1787/9789264070226-en

  • Parada J, Rubilar O, Sousa DZ, Martínez M, Fernández-Baldo MA, Tortella GR (2019) Short term changes in the abundance of nitrifying microorganisms in a soil-plant system simultaneously exposed to copper nanoparticles and atrazine. Sci Total Environ 670:1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Pascoli M, Jacques MT, Agarrayua DA, Avila DS, Lima R, Fraceto LF (2019) Neem oil based nanopesticide as an environmentally-friendly formulation for applications in sustainable agriculture: an ecotoxicological perspective. Sci Total Environ 677:57–67

    Article  CAS  PubMed  Google Scholar 

  • Plancot B, Santaella C, Jaber R, Kiefer-Meyer MC, Follet-Gueye M-L, Leprince J, Gattin I, Souc C, Driouich A, Vicré-Gibouin M (2013) Deciphering the responses of root border-like cells of arabidopsis and flax to pathogen-derived elicitors. Plant Physiol 163:1584–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado AG, Airoldi C (2001) The effect of the herbicide diuron on soil microbial activity. Pest Manag Sci 57:640–644

    Article  CAS  PubMed  Google Scholar 

  • Rajput V, Minkina T, Ahmed B, Sushkova S, Singh R, Soldatov M, Laratte B, Fedorenko A, Mandzhieva S, Blicharska E, Musarrat J, Saquib Q, Flieger J, Gorovtsov A (2020) Interaction of copper-based nanoparticles to soil, terrestrial, and aquatic systems: critical review of the state of the science and future perspectives. In: De Voogt P (ed) Reviews of environmental contamination and toxicology, vol 252. Springer, Cham, pp 51–96

    Google Scholar 

  • Rangasamy K, Athiappan M, Devarajan N, Samykannu G, Parray JA, Aruljothi KN, Shameem N, Alqarawi AA, Hashem A, Abd_Allah E.F. (2018) Pesticide degrading natural multidrug resistance bacterial flora. Microb Pathog 114:304–310

    Article  CAS  PubMed  Google Scholar 

  • Ropitaux M, Bernard S, Follet-Gueye M-L, Vicré M, Boulogne I, Driouich A (2019) Xyloglucan and cellulose form molecular cross-bridges connecting root border cells in pea (Pisum sativum). Plant Physiol Biochem 139:191–196

    Article  CAS  PubMed  Google Scholar 

  • Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10:2150–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, Van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111:585–592

    Article  CAS  PubMed  Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330

    Article  CAS  PubMed  Google Scholar 

  • Schlich K, Hoppe M, Kraas M, Schubert J, Chanana M, Hund-Rinke K (2018) Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants. Environ Pollut 242:1850–1859

    Article  CAS  PubMed  Google Scholar 

  • Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Shade A (2017) Diversity is the question, not the answer. ISME J 11:1–6

    Article  PubMed  Google Scholar 

  • Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5:e01371-01314

    Article  CAS  Google Scholar 

  • Shah FM, Razaq M, Ali A, Han P, Chen J (2017) Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. PLoS One 12:e0184639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao H, Zhang Y (2017) Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Shi J, Ye J, Fang H, Zhang S, Xu C (2018) Effects of copper oxide nanoparticles on paddy soil properties and components. Nanomaterials 8(10):839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215298/. Accessed 23 Jan 2020

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  CAS  PubMed  Google Scholar 

  • ŠImek M, Cooper JE (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur J Soil Sci 53:345–354

    Article  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723

    Article  CAS  Google Scholar 

  • Simonin M, Cantarel AAM, Crouzet A, Gervaix J, Martins JMF, Richaume A (2018a) Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front Microbiol 9:3102. https://www.frontiersin.org/articles/10.3389/fmicb.2018.03102/full. Accessed 23 Jan 2020

  • Simonin M, Colman BP, Tang W, Judy JD, Anderson SM, Bergemann CM, Rocca JD, Unrine JM, Cassar N, Bernhardt ES (2018b) Plant and microbial responses to repeated Cu(OH)2 nanopesticide exposures under different fertilization levels in an agro-ecosystem. Front Microbiol 9:1769. https://www.frontiersin.org/articles/10.3389/fmicb.2018.01769/full

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonin M, Colman BP, Anderson SM, King RS, Ruis MT, Avellan A, Bergemann CM, Perrotta BG, Geitner NK, Ho M, Barrera B, De la Unrine JM, Lowry GV, Richardson CJ, Wiesner MR, Bernhardt ES (2018c) Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecol Appl 28:1435–1449

    Article  PubMed  PubMed Central  Google Scholar 

  • Szukics U, Abell GCJ, Hödl V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol 72:395–406

    Article  CAS  PubMed  Google Scholar 

  • Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L (2019) Effects of herbicide on non-target microorganisms: towards a new class of biomarkers? Sci Total Environ 684:314–325

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Kah M, Kariman K (2019) Are nanoparticles a threat to Mycorrhizal and Rhizobial symbioses? a critical review. Front Microbiol 10:1660. https://www.frontiersin.org/articles/10.3389/fmicb.2019.01660/full. Accessed 22 Jan 2020

  • Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R, Peth S, Prechtel A, Ray N, Kögel-Knabner I (2018) Microaggregates in soils. J Plant Nutr Soil Sci 181:104–136

    Article  CAS  Google Scholar 

  • Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616–617:255–268

    Article  PubMed  CAS  Google Scholar 

  • VandeVoort AR, Arai Y (2012) Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol 8:358–364

    Article  CAS  Google Scholar 

  • VandeVoort AR, Skipper H, Arai Y (2014) Macroscopic assessment of nanosilver toxicity to soil denitrification kinetics. J Environ Qual 43:1424–1430

    Article  PubMed  CAS  Google Scholar 

  • Vicré M, Santaella C, Blanchet S, Gateau A, Driouich A (2005) Root border-like cells of arabidopsis. microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138:998–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitali F, Raio A, Sebastiani F, Cherubini P, Cavalieri D, Cocozza C (2019) Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Appl Microbiol Biotechnol 103:8215–8227

    Article  CAS  PubMed  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Watteau F, Villemin G (2018) Soil microstructures examined through transmission electron microscopy reveal soil-microorganisms interactions. Front Environ Sci 6:1–10. https://www.frontiersin.org/articles/10.3389/fenvs.2018.00106/full. Accessed 16 Jan 2020

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wilpiszeski RL, Aufrecht JA, Retterer ST, Sullivan MB, Graham DE, Pierce EM, Zablocki OD, Palumbo AV, Elias DA (2019) Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl Environ Microbiol 85(14):pii: e00324-19

    Article  Google Scholar 

  • Wolińska A, Stępniewska Z, Pytlak A (2015) The effect of environmental factors on total soil DNA content and dehydrogenase activity. Arch Biol Sci 67(2):493–501

    Article  Google Scholar 

  • Young IM, Crawford JW, Nunan N, Otten W, Spiers A (2008) Chapter 4 microbial distribution in soils: physics and scaling. In: Advances in agronomy. Academic, San Diego, pp 81–121. http://www.sciencedirect.com/science/article/pii/S0065211308006044. Accessed 23 Jan 2020

  • Zhai Y, Hunting ER, Wouters M, Peijnenburg WJGM, Vijver MG (2016) Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front Microbiol 7:1123. https://www.frontiersin.org/articles/10.3389/fmicb.2016.01123/full. Accessed 22 Jan 2020

  • Zhang X, Xu Z, Wu M, Qian X, Lin D, Zhang H, Tang J, Zeng T, Yao W, Filser J, Li L, Sharma VK (2019) Potential environmental risks of nanopesticides: application of Cu(OH)2 nanopesticides to soil mitigates the degradation of neonicotinoid thiacloprid. Environ Int 129:42–50

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci 110:3435–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Santaella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santaella, C., Plancot, B. (2020). Interactions of Nanoenabled Agrochemicals with Soil Microbiome. In: Fraceto, L.F., S.S. de Castro, V.L., Grillo, R., Ávila, D., Caixeta Oliveira, H., Lima, R. (eds) Nanopesticides. Springer, Cham. https://doi.org/10.1007/978-3-030-44873-8_6

Download citation

Publish with us

Policies and ethics