Skip to main content

Drug-Nutrient Interactions

  • Chapter
  • First Online:
Nutrition in Kidney Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

The causes of drug-nutrient interactions are often multifactorial but can be narrowed down into four general types of interactions: physical, chemical, physiologic, or pathophysiologic. As interactions between drugs and nutrients lead to alterations in the pharmacokinetic or pharmacodynamic parameters of either the drug or nutrient involved, it is important to understand the basic principles of pharmacokinetics and pharmacodynamics. The term pharmacokinetics (often referred to simply as kinetics) refers to the methods of describing the disposition of a drug or nutrient in the body. The pharmacokinetics of a compound can be broken down into four basic principles: absorption, distribution, metabolism, and excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan L-N. Drug nutrient interactions. J Parenter Enter Nutr. 2013;37:450–9.

    Article  CAS  Google Scholar 

  2. Chan L-N. Drug-nutrient interactions. In: Shils ME, Shike M, Olson JA, editors. Modern nutrition in health and disease. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 1539–53.

    Google Scholar 

  3. Brown R, Quercia RA, Sigman R. Total nutrient admixture: a review. J Parenter Enter Nutr. 1986;10:650–8.

    Article  CAS  Google Scholar 

  4. Slattery E, Rumore MM, Douglas JS, Seres DS. 3-in-1 vs 2-in-1 parenteral nutrition in adults: a review. J Parenter Enter Nutr. 2014;29:631–5.

    Google Scholar 

  5. Malatani RT. Enteral feeding and fluoroquinolones. Int J Pharm. 2014;4(4):74–7.

    Google Scholar 

  6. Neuvonen PJ. Interactions with the absorption of tetracyclines. Drugs. 1976;11(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  7. Sridharan K, Sivaramakrishnan G. Interaction of citrus juices with cyclosporine: systematic review and meta-analysis. Eur J Drug Metab Pharmacokinet. 2016;41(6):665–73.

    Article  CAS  PubMed  Google Scholar 

  8. An G, Mukker JK, Derendorf H, Frye RF. Enzyme- and transporter-mediated beverage-drug interactions: an update on fruit juices and green tea. J Clin Pharmacol. 2015;55(12):1313–31.

    Article  CAS  PubMed  Google Scholar 

  9. Bailey DG, Spence JD, Munoz C, Arnold JM. Interaction of fruit juices with felodipine and nifedipine. Lancet. 1991;337(8736):268–9.

    Article  CAS  PubMed  Google Scholar 

  10. Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65(10):1340–56.

    Article  CAS  PubMed  Google Scholar 

  11. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verrotti A, Trotta D, Morgese G, Chiarelli F. Valproate-induced hyperammonemic encephalopathy. Metab Brain Dis. 2002;17(4):367–73.

    Article  CAS  PubMed  Google Scholar 

  13. Chopra A, Kolla BP, Mansukhani MP, Netzel P, Frye MA. Valproate-induced hyperammonemic encephalopathy: anupdate on risk factors, clinical correlates and management. Gen Hosp Psychiatry. 2012;34(3):290–8.

    Article  PubMed  Google Scholar 

  14. Coppola G, Epifanio G, Auricchio G, Federico RR, Resicato G, Pascotto A. Plasma free carnitine in epilepsy children, adolescents and young adults treated with old and new antiepileptic drugs with or without ketogenic diet. Brain and Development. 2006;28(6):358–65.

    Article  PubMed  Google Scholar 

  15. Moreno FA, Macey H, Schreiber B. Carnitine levels in valproic acid-treated psychiatric patients: a cross-sectional study. J Clin Psychiatry. 2005;66(5):555–8.

    Article  CAS  PubMed  Google Scholar 

  16. Okamura M, Terada T, Katsura T, Saito H, Inui K. Inhibitory effect of zinc on PEPT1-mediated transport of glycylsarcosine and beta-lactam antibiotics in human intestinal cell line Caco-2. Pharm Res. 2003;20(9):1389–93.

    Article  CAS  PubMed  Google Scholar 

  17. Okamura M, Terada T, Katsura T, Inui K. Inhibitory effect of zinc on the absorption of beta-lactam antibiotic ceftibuten via the peptide transporters in rats. Drug Metab Pharmacokinet. 2008;23(6):464–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ogawa R, Echizen H. Clinically significant drug interactions with antacids: an update. Drugs. 2011;71(14):1839–64.

    Article  CAS  PubMed  Google Scholar 

  19. Rodríguez Cruz MS, González Alonso I, Sánchez-Navarro A, SayaleroMarinero ML. In vitro study of the interaction between quinolones and polyvalent cations. Pharm Acta Helv. 1999;73(5):237–45.

    Article  PubMed  Google Scholar 

  20. Mueller BA, Brierton DG, Abel SR, Bowman L. Effect of enteral feeding with ensure on ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother. 1994;38(9):2101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cohn SM, Sawyer MD, Burns GA, Tolomeo C, Milner KA. Enteric absorption of ciprofloxacin during tube feeding in the critically ill. J Antimicrob Chemother. 1996;38(5):871–6.

    Article  CAS  PubMed  Google Scholar 

  22. Mimoz O, Binter V, Jacolot A, Edouard A, Tod M, Petitjean O, et al. Pharmacokinetics and absolute bioavailability of ciprofloxacin administered through a nasogastric tube with continuous enteral feeding to critically ill patients. Intensive Care Med. 1998;24(10):1047–51.

    Article  CAS  PubMed  Google Scholar 

  23. Wright DH, Pietz SL, Konstantinides FN, Rotschafer JC. Decreased in vitro fluoroquinolone concentrations after admixture with an enteral feeding formulation. JPEN J Parenter Enteral Nutr. 2000;24(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  24. Berlin I, Zimmer R, Cournot A, Payan C, Pedarriosse AM, Puech AJ. Determination and comparison of the pressor effect of tyramine during long-term moclobemide and tranylcypromine treatment in healthy volunteers. Clin Pharmacol Ther. 1989;46:344–51.

    Article  CAS  PubMed  Google Scholar 

  25. Bieck PR, Antonin KH. Tyramine potentiation during treatment with MAO inhibitors: brofaromine and moclobemidevs irreversible inhibitors. J Neural Transm. 1989;Suppl 28:21–31.

    Google Scholar 

  26. Blackwell B, Mabbitt LA. Tyramine in cheese related to hypertensive crises after monoamine-oxidase inhibition. Lancet. 1965;1(7392):938–40.

    Article  CAS  PubMed  Google Scholar 

  27. Gillman PK. A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths. J Neural Transm. 2018;125(11):1707–17.

    Article  CAS  PubMed  Google Scholar 

  28. Linezolid. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods. Available at: http://online.lexi.com. Accessed 27 Feb 2019.

  29. Isoniazid. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods. Available at: http://online.lexi.com. Accessed 27 Feb 2019.

  30. Bennett WM. Drug interactions and consequences of sodium restriction. Am J Clin Nutr. 1997;62(2 Suppl):678S–81S.

    Article  Google Scholar 

  31. Yeh DD, Fuentes E, Quraishi SA, Cropano C, Kaafarani H, Lee J, et al. Adequate nutrition may get you home: effect of caloric/protein deficits on discharge destination of critically ill surgical patients. J Parenter Enter Nutr. 2016;40(1):37–44.

    Article  CAS  Google Scholar 

  32. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT. Recommendations for the use of medications with continuous enteral nutrition. Am J Health Syst Pharm. 2009;66:1458–67.

    Article  CAS  PubMed  Google Scholar 

  33. Au Yeung SC, Ensom MH. Phenytoin and enteral feedings: does evidence support an interaction? Ann Pharmacother. 2000;34:896–905.

    Article  CAS  PubMed  Google Scholar 

  34. Bauer LA. Interference of oral phenytoin absorption by continuous nasogastric feedings. Neurology. 1982;32:570–2.

    Article  CAS  PubMed  Google Scholar 

  35. Penrod LE, Allen JB, Cabacungan LR. Warfarin resistance and enteral feedings: 2 case reports and a supporting in vitro study. Arch Phys Med Rehabil. 2001;82:1270–3.

    Article  CAS  PubMed  Google Scholar 

  36. Martin JE, Lutomski DM. Warfarin resistance and enteral feedings. J Parenter Enter Nutr. 1989;13:206–8.

    Article  CAS  Google Scholar 

  37. Kuhn TA, Garnett WR, Wells BK, Karnes HT. Recovery of warfarin from an enteral nutrient formula. Am J Hosp Pharm. 1989;46:1395–9.

    CAS  PubMed  Google Scholar 

  38. Dickerson RN, Garmon WM, Kuhl DA, Minard G, Brown RO. Vitamin K-independent warfarin resistance after concurrent administration of warfarin and continuous enteral nutrition. Pharmacotherapy. 2008;28:308–13.

    Article  CAS  PubMed  Google Scholar 

  39. Dickerson RN. Warfarin resistance and enteral tube feeding: a vitamin K-independent interaction. Nutrition. 2008;24(10):1048–52.

    Article  CAS  PubMed  Google Scholar 

  40. Dickerson RN, Maish GO 3rd, Minard G, Brown RO. Clinical relevancy of the levothyroxine-continuous enteral nutrition interaction. Nutr Clin Pract. 2010;25(6):646–52.

    Article  PubMed  Google Scholar 

  41. Rollins CJ. Drug-nutrient interactions. In: Mueller CM, editor. The a.S.P.E.N. adult nutrition support core curriculum. 2nd ed. Silver Spring: American Society of Parenteral and Enteral Nutrition; 2012. p. 298–312.

    Google Scholar 

  42. Coreg (carvedilol) package insert. Research Triangle Park: GlaxoSmithKline; 2017.

    Google Scholar 

  43. JoyM. 2019. ASN Kidney News Online. Retrieved from https://www.kidneynews.org.

  44. Abuhelwa AY, Williams DB, Upton RN, Foster DJ. Food, gastrointestinal PH, and models of oral drug absorption. Eur J Pharm Biopharm. 2017;112:234–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flecha, A., Voss, J., Hao, D. (2020). Drug-Nutrient Interactions. In: Burrowes, J., Kovesdy, C., Byham-Gray, L. (eds) Nutrition in Kidney Disease. Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-030-44858-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44858-5_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-44857-8

  • Online ISBN: 978-3-030-44858-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics