Skip to main content

Life Cycle Analysis for Biodiesel Production from Oleaginous Fungi

  • Chapter
  • First Online:
Fungi in Fuel Biotechnology

Abstract

Today, one of the most important global issues is the emissions of harmful gases from combustion of fossil fuels such as petrodiesel. Detrimental impacts of fossil fuel combustion on human health and ecosystem quality have attracted considerable attention in the past two decades. Accordingly, researchers have shown an increasing interest in the production of renewable biofuels with low exhaust emissions such as biodiesel. However, the main problem associated with biofuels is that edible crops are often used for producing such fuels, posing threats to food security and natural habitats. To address these challenges, research efforts have been directed toward second- and third-generation feedstocks for biofuel production. One of the most promising third-generation feedstocks for biodiesel production is the microbial oil obtained from oleaginous fungi. These microorganisms can accumulate lipids in their cells up to 70% of dry weight. The lipids obtained from oleaginous fungi can be converted into biodiesel through conventional transesterification methods. Despite the promising features of microbial oil biodiesel, it is vital to comprehensively and systematically investigate the potential environmental impacts of such biofuels before commercialization. Life cycle assessment (LCA) as a powerful tool can be used in environmental decision-making of fungal biodiesel production processes. Accordingly, this chapter is aimed at briefly reviewing oleaginous fungi and their application for biodiesel production as well as comprehensively illustrating the methodology used for implementing LCA analysis for measuring the environmental impacts associated with fungal biodiesel production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal D, Agarwal AK (2007) Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl Therm Eng 27:2314–2323

    Article  CAS  Google Scholar 

  • Al-Dawody MF, Bhatti SK (2014) Experimental and computational investigations for combustion, performance and emission parameters of a diesel engine fueled with soybean biodiesel-diesel blends. Energy Procedia 52:421–430

    Article  CAS  Google Scholar 

  • Ali OM, Mamat R, Rasul MG, Najafi G (2017) Potential of biodiesel as fuel for diesel engine. In: Clean energy for sustainable development. Elsevier, pp 557–590

    Google Scholar 

  • Allen DT (1997) Public policy applications of life-cycle assessment: proceedings from the workshop on application of life-cycle assessment to public policy, 14–19 August 1995, Wintergreen, Virginia, USA. SETAC Foundation for Environmental Education

    Google Scholar 

  • Altıparmak D, Keskin A, Koca A, Gürü M (2007) Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends. Bioresour Technol 98:241–246

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Aransiola EF, Ehinmitola EO, Adebimpe AI, et al (2019) Prospects of biodiesel feedstock as an effective ecofuel source and their challenges. In: Advances in eco-fuels for a sustainable environment. Elsevier, pp 53–87

    Google Scholar 

  • Arous F, Triantaphyllidou I-E, Mechichi T et al (2015) Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis. Biomass Bioenergy 80:307–315

    Article  CAS  Google Scholar 

  • Avhad MR, Marchetti JM (2019) Uses of enzymes for biodiesel production. In: Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier, pp 135–152

    Google Scholar 

  • Bautista S, Espinoza A, Narvaez P et al (2019) A system dynamics approach for sustainability assessment of biodiesel production in Colombia. Baseline simulation. J Clean Prod 213:1–20

    Article  CAS  Google Scholar 

  • Bayat A, Baghdadi M, Bidhendi GN (2018) Tailored magnetic nano-alumina as an efficient catalyst for transesterification of waste cooking oil: optimization of biodiesel production using response surface methodology. Energy Convers Manag 177:395–405

    Article  CAS  Google Scholar 

  • Bento HBS, Carvalho AKF, Reis CER, De Castro HF (2019) Microbial biodiesel production: from sucrose-based carbon sources to alkyl esters via enzymatic transesterification. Process Saf Environ Prot 121:349–356

    Article  CAS  Google Scholar 

  • Beopoulos A, Chardot T, Nicaud J-M (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696

    Article  CAS  Google Scholar 

  • Björn A, Laurent A, Owsianiak M, Olsen SI (2018) Goal definition. In: Life cycle assessment. Springer, pp 67–74

    Google Scholar 

  • Brentrup F, Küsters J, Kuhlmann H, Lammel J (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. Eur J Agron 20:247–264

    Article  Google Scholar 

  • Brusseau ML (2019) Sustainable development and other solutions to pollution and global change. In: Environmental and pollution science. Elsevier, pp 585–603

    Google Scholar 

  • Carneiro MLNM, Pradelle F, Braga SL et al (2017) Potential of biofuels from algae: comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renew Sust Energ Rev 73:632–653

    Article  CAS  Google Scholar 

  • Carsanba E, Papanikolaou S, Erten H (2018) Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol 38:1230–1243

    Article  CAS  Google Scholar 

  • Chen Y-H, Walker TH (2012) Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresour Technol 114:512–517

    Article  CAS  Google Scholar 

  • Chen J, Leng L, Ye C et al (2018) A comparative study between fungal pellet-and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresour Technol 259:181–190

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  CAS  Google Scholar 

  • Cherubini F, Strømman AH, Ulgiati S (2011) Influence of allocation methods on the environmental performance of biorefinery products – a case study. Resour Conserv Recycl 55:1070–1077

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Coelho ST, Goldemberg J (2019) Sustainability and environmental impacts of sugarcane biofuels. In: Sugarcane biofuels. Springer, pp 409–444

    Google Scholar 

  • Darda S, Papalas T, Zabaniotou A (2018) Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J Clean Prod 208:575–588

    Article  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578

    Article  CAS  PubMed Central  Google Scholar 

  • de Vasconcellos A, Miller AH, Aranda DAG, Nery JG (2018) Biocatalysts based on nanozeolite-enzyme complexes: effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock. Colloids Surf B Biointerf 165:150–157

    Article  CAS  Google Scholar 

  • Donot F, Strub C, Fontana A et al (2016) Rapid analysis and quantification of major neutral lipid species and free fatty acids by HPLC ELSD from microalgae. Eur J Lipid Sci Technol 118:1550–1556

    Article  CAS  Google Scholar 

  • Faraguna F, Racar M, Juki A (2019) Test method for determination of different biodiesels (fatty acid alkyl esters) content in diesel fuel using FTIR-ATR. Renew Energy 133:1231–1235

    Article  CAS  Google Scholar 

  • Farooq M, Ramli A, Naeem A et al (2018) Biodiesel production from date seed oil (Phoenix dactylifera L.) via egg shell derived heterogeneous catalyst. Chem Eng Res Des 132:644–651

    Article  CAS  Google Scholar 

  • Fernández FA, Sevilla JMF, Grima EM (2019) Costs analysis of microalgae production. In: Biofuels from algae. Elsevier, pp 551–566

    Google Scholar 

  • Franzoni E, Volpi L, Bonoli A et al (2018) The environmental impact of cleaning materials and technologies in heritage buildings conservation. Energ Buildings 165:92

    Article  Google Scholar 

  • Gladfelter AS, James TY, Amend AS (2019) Marine fungi. Curr Biol 29:R191–R195

    Article  CAS  Google Scholar 

  • Goh BHH, Ong HC, Cheah MY et al (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sust Energ Rev 107:59–74

    Article  CAS  Google Scholar 

  • Gujjala LKS, Kumar SPJ, Talukdar B et al (2019) Biodiesel from oleaginous microbes: opportunities and challenges. Biofuels 10:45–59

    Article  CAS  Google Scholar 

  • Heijungs R, Wiloso EI (2014) Life cycle assessment of bioenergy systems. In: Sustainable bioenergy production. CRC Press, Boca Raton

    Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D et al (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210

    Article  CAS  Google Scholar 

  • Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M et al (2018) A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers Manag 174:579. https://doi.org/10.1016/j.enconman.2018.08.050

    Article  CAS  Google Scholar 

  • Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M et al (2019) Life-Cycle Assessment (LCA) analysis of algal fuels. In: Spilling K (ed) Biofuels from algae. Methods in molecular biology, vol 1980. Humana, New York

    Google Scholar 

  • Huang X, Luo H, Mu T et al (2018) Enhancement of lipid accumulation by oleaginous yeast through phosphorus limitation under high content of ammonia. Bioresour Technol 262:9–14

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF et al (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147

    Article  Google Scholar 

  • ISO (2006a) 14044 International standard. Environmental management–life cycle assessment–principles and framework. International Organisation for Standardization, Geneva

    Google Scholar 

  • ISO (2006b) 14040 International standard. Environmental management–life cycle assessment–principles and framework. International Organisation for Standardization, Geneva

    Google Scholar 

  • Jambulingam R, Shalma M, Shankar V (2019) Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid. J Clean Prod 215:245–258

    Article  CAS  Google Scholar 

  • Jin G, Yang F, Hu C et al (2012) Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 111:378–382

    Article  CAS  Google Scholar 

  • Kamat S, Khot M, Zinjarde S et al (2013) Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol 135:246–253

    Article  CAS  Google Scholar 

  • Karatay SE, Demiray E, Dönmez G (2019) Efficient approaches to convert Coniochaeta hoffmannii lipids into biodiesel by in-situ transesterification. Bioresour Technol 285:121321

    Article  CAS  Google Scholar 

  • Keneni YG, Marchetti JM (2017) Oil extraction from plant seeds for biodiesel production. AIMS Energy 5:316–340

    Article  CAS  Google Scholar 

  • Khoshnevisan B, Rafiee S, Tabatabaei M et al (2017) Life cycle assessment of castor-based biorefinery: a well to wheel LCA. Int J Life Cycle Assess:1–18

    Google Scholar 

  • Khot M, Katre G, Zinjarde S, RaviKumar A (2018) Single Cell Oils (SCOs) of oleaginous filamentous fungi as a renewable feedstock: a biodiesel biorefinery approach. In: Fungal Biorefineries. Springer, pp 145–183

    Google Scholar 

  • Kim Y-H, Choi Y-K, Park J et al (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315

    Article  CAS  Google Scholar 

  • Kim J, Yang Y, Bae J, Suh S (2013) The importance of normalization references in interpreting life cycle assessment results. J Ind Ecol 17:385–395

    Article  Google Scholar 

  • Komolafe O, Orta SBV, Monje-Ramirez I et al (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304

    Article  CAS  Google Scholar 

  • Kruse JM (2018) The phylogeny of smut fungi (Ustilaginomycotina)

    Google Scholar 

  • Lee Y-C, Huh YS, Farooq W et al (2013) Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour Technol 137:74–81

    Article  CAS  Google Scholar 

  • Li T, Hou W-T, Ruan Y et al (2017) Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis. Fungal Biol 121:95–102

    Article  CAS  Google Scholar 

  • Li X, Chen Y, Nielsen J (2019) Harnessing xylose pathways for biofuels production. Curr Opin Biotechnol 57:56–65

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Liu G, Qu Y (2018) Engineering of filamentous fungi for efficient conversion of lignocellulose: tools, recent advances and prospects. Biotechnol Adv

    Google Scholar 

  • Markou G, Monlau F (2019) Nutrient recycling for sustainable production of algal biofuels. In: Biofuels from algae. Elsevier, pp 109–133

    Google Scholar 

  • Márquez S, Fernández JJ, Mancebo C et al (2019) Tricarboxylic acid cycle activity and remodeling of glycerophosphocholine lipids support cytokine induction in response to fungal patterns. Cell Rep 27:525–536

    Article  CAS  Google Scholar 

  • Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification-a review. Renew Sust Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Menten F, Chèze B, Patouillard L, Bouvart F (2013) A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renew Sust Energ Rev 26:108–134

    Article  CAS  Google Scholar 

  • Mishra VK, Goswami R (2018) A review of production, properties and advantages of biodiesel. Biofuels 9:273–289

    Article  CAS  Google Scholar 

  • Mofijur M, Rasul MG, Hassan NMS, Nabi MN (2019) Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 156:53–58

    Article  CAS  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Najjar A, Robert S, Guérin C et al (2011) Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl Microbiol Biotechnol 89:1947–1962

    Article  CAS  Google Scholar 

  • Nanaki EA, Koroneos CJ (2012) Comparative LCA of the use of biodiesel, diesel and gasoline for transportation. J Clean Prod 20:14–19

    Article  CAS  Google Scholar 

  • Navas-Anguita Z, García-Gusano D, Iribarren D (2019) A review of techno-economic data for road transportation fuels. Renew Sust Energ Rev 112:11–26

    Article  Google Scholar 

  • Pan W, Li K, Teng Y (2018) Rethinking system boundaries of the life cycle carbon emissions of buildings. Renew Sust Energ Rev 90:379–390

    Article  Google Scholar 

  • Pandey G (2018) Prospects of nanobioremediation in environmental cleanup. Orient J Chem 34:2838–2850

    Article  CAS  Google Scholar 

  • Pandey A, Mohan SV, Chang J-S, et al (2019a) Biomass, biofuels, biochemicals: biohydrogen. Elsevier, Amsterdam

    Google Scholar 

  • Pandey A, Larroche C, Gnansounou E, et al (2019b) Biomass, biofuels, biochemicals: biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Academic, San Diego

    Google Scholar 

  • Patel A, Arora N, Pruthi V, Pruthi PA (2019) A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production. Ultrason Sonochem 51:504–516

    Article  CAS  Google Scholar 

  • Paudel YP, Qin W (2015) Two bacillus species isolated from rotting wood samples are good candidates for the production of bioethanol using agave biomass. J Microb Biochem Technol 7:218–225

    Google Scholar 

  • Paul S, Bhagobaty RK, Nihalani MC, Joshi SR (2019) Are endophytic fungi a feasible option as biofuel nanofactories? Int J Sci Res Rev 7:1112–1118

    Google Scholar 

  • Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sust Energ Rev 24:159–171

    Article  CAS  Google Scholar 

  • Prasad RBN (2017) Intensive technological analysis for biodiesel production from a variety of feedstocks: state-of-the-art. In: Sustainable biofuels development in India. Springer, pp 337–355

    Google Scholar 

  • Prasad S, Venkatramanan V, Kumar S, Sheetal KR (2019) Biofuels: a clean technology for environment management. In: Sustainable green technologies for environmental management. Springer, pp 219–240

    Google Scholar 

  • Presterl E, Diab-El Schahawi M, Lusignani LS et al (2019) Medical mycology: fungal infections. In: Basic microbiology and infection control for midwives. Springer, pp 155–159

    Google Scholar 

  • Probst KV, Schulte LR, Durrett TP et al (2016) Oleaginous yeast: a value-added platform for renewable oils. Crit Rev Biotechnol 36:942–955

    Article  CAS  Google Scholar 

  • Purahong W, Wubet T, Krüger D, Buscot F (2018) Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME J 12:289

    Article  Google Scholar 

  • Rahimi V, Karimi K, Shafiei M et al (2018) Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery. Renew Energy 117:135–149

    Article  CAS  Google Scholar 

  • Rajaeifar MA, Akram A, Ghobadian B et al (2016) Environmental impact assessment of olive pomace oil biodiesel production and consumption: a comparative lifecycle assessment. Energy 106:87–102

    Article  CAS  Google Scholar 

  • Rajaeifar MA, Abdi R, Tabatabaei M (2017) Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view. Renew Sust Energ Rev 74:278–298

    Article  CAS  Google Scholar 

  • Rajaeifar MA, Tabatabaei M, Aghbashlo M et al (2019) Biodiesel production and consumption: Life Cycle Assessment (LCA) approach. In: Biodiesel. Springer, pp 161–192

    Google Scholar 

  • Ramanjaneyulu G, Reddy BR (2019) Emerging trends of microorganism in the production of alternative energy. In: Recent developments in applied microbiology and biochemistry. Elsevier, pp 275–305

    Google Scholar 

  • Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rossman AY, Palm ME (2006) Why are phytophthora and other oomycota not true fungi? Outlooks Pest Manag 17:217

    Article  Google Scholar 

  • Sekova VY, Isakova EP, Deryabina YI (2015) Biotechnological applications of the extremophilic yeast Yarrowia lipolytica. Appl Biochem Microbiol 51:278–291

    Article  CAS  Google Scholar 

  • Selvaraj R, Praveenkumar R, Moorthy IG (2019) A comprehensive review of biodiesel production methods from various feedstocks. Biofuels 10:325–333

    Article  CAS  Google Scholar 

  • Sennu P, Arun N, Madhavi S et al (2019) All carbon based high energy lithium-ion capacitors from biomass: the role of crystallinity. J Power Sources 414:96–102

    Article  CAS  Google Scholar 

  • Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz 10:235–251

    Article  CAS  Google Scholar 

  • Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    Article  CAS  Google Scholar 

  • Somashekar D, Venkateshwaran G, Srividya C et al (2001) Efficacy of extraction methods for lipid and fatty acid composition from fungal cultures. World J Microbiol Biotechnol 17:317–320

    Article  CAS  Google Scholar 

  • Srivastava N, Srivastava M, Gupta VK et al (2018) Recent development on sustainable biodiesel production using sewage sludge. 3. Biotech 8:245

    Google Scholar 

  • Subhash GV, Mohan SV (2015) Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Convers Biorefinery 5:215–226. https://doi.org/10.1007/s13399-014-0128-4

    Article  CAS  Google Scholar 

  • Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287

    Article  CAS  Google Scholar 

  • Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14:335–353

    Article  Google Scholar 

  • Sun J, Xiong X, Wang M et al (2019) Microalgae biodiesel production in China: a preliminary economic analysis. Renew Sust Energ Rev 104:296–306

    Article  Google Scholar 

  • Tabatabaei M, Aghbashlo M, Dehhaghi M et al (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energy Combust Sci 74:239–303

    Article  Google Scholar 

  • Vicente G, Bautista LF, Rodríguez R et al (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  • Vignesh G, Barik D (2019) Toxic waste from biodiesel production industries and its utilization. In: Energy from toxic organic waste for heat and power generation. Elsevier, pp 69–82

    Google Scholar 

  • Warnock DW (2019) Name changes for fungi of medical importance, 2016–2017. J Clin Microbiol 57:e01183–e01118

    PubMed Central  Google Scholar 

  • Watts N, Amann M, Ayeb-Karlsson S, et al (2017) The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:581–630

    Google Scholar 

  • Watts N, Amann M, Ayeb-Karlsson S et al (2018) The lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:581–630

    Article  Google Scholar 

  • Wolf MA, Pant R, Chomkhamsri K et al (2012) The International Reference Life Cycle Data System (ILCD) handbook-JRC reference reports

    Google Scholar 

  • Wu S, Hu C, Jin G et al (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    Article  CAS  Google Scholar 

  • Yang Y (2016) Two sides of the same coin: consequential life cycle assessment based on the attributional framework. J Clean Prod 127:274–281

    Article  Google Scholar 

  • Yang Y, Heijungs R (2018) On the use of different models for consequential life cycle assessment. Int J Life Cycle Assess 23:751–758

    Article  Google Scholar 

  • Yang Y, Heijungs R (2019) Moving from completing system boundaries to more realistic modeling of the economy in life cycle assessment. Int J Life Cycle Assess 24:211–218

    Article  Google Scholar 

  • Yang Y, Bae J, Kim J, Suh S (2012) Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Environ Sci Technol 46:3671–3678

    Article  CAS  Google Scholar 

  • Yang Y, Tilman D, Lehman C, Trost JJ (2018) Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat Sustain 1:686

    Article  Google Scholar 

  • Yang Y, Tilman D, Furey G, Lehman C (2019a) Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat Commun 10:718

    Article  CAS  PubMed Central  Google Scholar 

  • Yang Y, Reilly EC, Jungers JM et al (2019b) Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth 1:434–445

    Article  Google Scholar 

  • Yang L, Li H, Wang Q (2019c) A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresour Technol 275:35–43

    Article  CAS  Google Scholar 

  • Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121

    Article  CAS  Google Scholar 

  • Zhu M, Zhou PP, Yu LJ (2002) Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. Bioresour Technol 84:93–95

    Article  CAS  Google Scholar 

  • Živković SB, Veljković MV, Banković-Ilić IB, Krstić IM, Konstantinović SS, Ilić SB, Avramović JM, Stamenković OS, Veljković VB (2017) Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renew Sust Energ Rev 79:222–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meisam Tabatabaei or Mortaza Aghbashlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Hoang, A.T., Yang, Y., Salehi Jouzani, G. (2020). Life Cycle Analysis for Biodiesel Production from Oleaginous Fungi. In: Salehi Jouzani, G., Tabatabaei, M., Aghbashlo, M. (eds) Fungi in Fuel Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-44488-4_9

Download citation

Publish with us

Policies and ethics