Skip to main content

Nanotechnology Beyond the Antibiosis

  • Chapter
  • First Online:
Preclinical Evaluation of Antimicrobial Nanodrugs

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 275 Accesses

Abstract

The antibiotic era must pass to another stage if it wants to overcome antimicrobial resistance; this new phase or group of medications must have the ability to avoid the emergence of resistance while controlling infectious disease without altering the host’s microbiome. In this order of ideas, the design and development of symbiotic medications such as those containing prebiotic, probiotic, and postbiotic metabolites are of great importance for the move toward a new antimicrobial model that takes symbiosis into account more than antibiosis, as a primary therapeutic target and that seeks to restore interactions between host and symbionts as part of the healing process. Thus, to implement this new approach, the available pharmacological tools are required in order to gain access to the largest number of host microbiome species in order to develop multisystemic therapies that prevent dysbiosis, chronic inflammation, and other conditions such as cancer. Based on the foregoing, the objective of this chapter is to conduct a survey regarding modern nanoantimicrobials as part of a new symbiotic approach where the therapeutic target is the microbiome and its interactions, in order to modulate the restoration of both the immune system and the neuroendocrine.

Science cannot be stopped. Man will gather knowledge no matter what the consequences – and we cannot predict what they will be. Science will go on — whether we are pessimistic, or are optimistic, as I am. I know that great, interesting, and valuable discoveries can be made and will be made… But I know also that still more interesting discoveries will be made that I have not the imagination to describe — and I am awaiting them, full of curiosity and enthusiasm

We may, I believe, anticipate that the chemist of the future who is interested in the structure of proteins, nucleic acids, polysaccharides, and other complex substances with high molecular weight will come to rely upon a new structural chemistry, involving precise geometrical relationships among the atoms in the molecules and the rigorous application of the new structural principles, and that great progress will be made, through this technique, in the attack, by chemical methods, on the problems of biology and medicine

What astonished me was the very low toxicity of a substance that has such very great physiological power. A little pinch, 5 mg, every day, is enough to keep a person from dying of pellagra, but it is so lacking in toxicity that ten thousand times as much can be taken without harm

― Linus Pauling (1901–1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afolayan, A. O., Adetoye, A., & Ayeni, F. A. (2018). Beneficial microbes: Roles in the era of antimicrobial resistance. In Antimicrobial resistance-A global threat. IntechOpen. Rijeka, Croatia

    Google Scholar 

  • Albillos, A., Gottardi, A., & Rescigno, M. (2019). The gut-liver axis in liver disease: Pathophysiological basis for therapy. Journal of Hepatology, 72(3), 558–577

    Google Scholar 

  • Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology, 18(5), 240–251.

    Article  CAS  Google Scholar 

  • Appanna, V. D. (2018). Human microbes-the power within: Health, healing and beyond. Springer. Berlin/Heidelberg, Germany

    Google Scholar 

  • Bang, C., Dagan, T., Deines, P., Dubilier, N., Duschl, W. J., Fraune, S., et al. (2018). Metaorganisms in extreme environments: Do microbes play a role in organismal adaptation? Zoology, 127, 1–19.

    Article  PubMed  Google Scholar 

  • Baritaki, S., de Bree, E., Chatzaki, E., & Pothoulakis, C. (2019). Chronic stress, inflammation, and colon cancer: A CRH system-driven molecular crosstalk. Journal of Clinical Medicine, 8(10), 1669.

    Article  PubMed Central  CAS  Google Scholar 

  • Becattini, S., Taur, Y., & Pamer, E. G. (2016). Antibiotic-induced changes in the intestinal microbiota and disease. Trends in Molecular Medicine, 22(6), 458–478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belkaid, Y., & Harrison, O. J. (2017). Homeostatic immunity and the microbiota. Immunity, 46(4), 562–576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biteen, J. S., Blainey, P. C., Cardon, Z. G., Chun, M., Church, G. M., Dorrestein, P. C., et al. (2016). Tools for the microbiome: Nano and beyond. ACS Nano, 10(1), 6.

    Article  PubMed  CAS  Google Scholar 

  • Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biology, 13(8), e1002226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caneus, D. (2017). Nanotechnology and its partnership with synbiotics. Journal of Nanomedicine Research, 6(1), 00142.

    Article  Google Scholar 

  • Cani, P. D. (2018). Human gut microbiome: Hopes, threats and promises. Gut, 67(9), 1716–1725.

    Article  PubMed  CAS  Google Scholar 

  • Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology: Quarterly Publication of the Hellenic Society of Gastroenterology, 28(2), 203.

    Google Scholar 

  • Casals-Pascual, C., Vergara, A., & Vila, J. (2018). Intestinal microbiota and antibiotic resistance: Perspectives and solutions. Human Microbiome Journal, 9, 11–15.

    Article  Google Scholar 

  • Cerdó, T., García-Santos, J. A., Bermúdez, M. G., & Campoy, C. (2019). The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients, 11(3), 635.

    Article  PubMed Central  CAS  Google Scholar 

  • Chen, T., Vargeese, C., Vagle, K., Wang, W., & Zhang, Y. (2011). U.S. Patent No. 7,893,302. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Chibbar, R., & Dieleman, L. A. (2019). The gut microbiota in celiac disease and probiotics. Nutrients, 11(10), 2375.

    Article  PubMed Central  Google Scholar 

  • Chong, P. P., Chin, V. K., Looi, C. Y., Wong, W. F., Madhavan, P., & Yong, V. C. (2019). The microbiome and irritable bowel syndrome–a review on the pathophysiology, current research and future therapy. Frontiers in Microbiology, 10, 1136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow, J., Lee, S. M., Shen, Y., Khosravi, A., & Mazmanian, S. K. (2010). Host–bacterial symbiosis in health and disease. In Advances in immunology (Vol. 107, pp. 243–274). Academic Press.

    Google Scholar 

  • Dahiya, D. K., & Puniya, A. K. (2018). Impact of nanosilver on gut microbiota: A vulnerable link. Future Microbiology, 13(4), 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Dang, H., & Lovell, C. R. (2016). Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biology Reviews, 80(1), 91–138.

    Article  PubMed  CAS  Google Scholar 

  • De la Fuente, M. (2018). Oxidation and inflammation in the immune and nervous systems, a link between aging and anxiety. In Handbook of immunosenescence: Basic understanding and clinical implications (pp. 1–31). Springer, Berlin/Heidelberg, Germany

    Google Scholar 

  • Dheilly, N. M. (2014). Holobiont–holobiont interactions: Redefining host–parasite interactions. PLoS Pathogens, 10(7), e1004093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding, C., Tang, W., Fan, X., & Wu, G. (2018). Intestinal microbiota: A novel perspective in colorectal cancer biotherapeutics. Oncotargets and Therapy, 11, 4797.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumitrescu, L., Popescu-Olaru, I., Cozma, L., Tulbă, D., Hinescu, M. E., Ceafalan, L. C., et al. (2018). Oxidative stress and the microbiota-gut-brain axis. Oxidative Medicine and Cellular Longevity, 2018, 1.

    Article  CAS  Google Scholar 

  • Fadeel, B. (2019). The right stuff: On the future of nanotoxicology. Frontiers in Toxicology, 1, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flandroy, L., Poutahidis, T., Berg, G., Clarke, G., Dao, M. C., Decaestecker, E., et al. (2018). The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 627, 1018–1038.

    Article  CAS  Google Scholar 

  • Foster, K. R., Schluter, J., Coyte, K. Z., & Rakoff-Nahoum, S. (2017). The evolution of the host microbiome as an ecosystem on a leash. Nature, 548(7665), 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francescone, R., Hou, V., & Grivennikov, S. I. (2014). Microbiome, inflammation and cancer. Cancer Journal (Sudbury, Mass.), 20(3), 181.

    Article  CAS  Google Scholar 

  • Francino, M. P. (2016). Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Frontiers in Microbiology, 6, 1543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galloway-Peña, J. R., Jenq, R. R., & Shelburne, S. A. (2017). Can consideration of the microbiome improve antimicrobial utilization and treatment outcomes in the oncology patient? Clinical Cancer Research, 23(13), 3263–3268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gjini, E., & Brito, P. H. (2016). Integrating antimicrobial therapy with host immunity to fight drug-resistant infections: Classical vs. adaptive treatment. PLoS Computational Biology, 12(4), e1004857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godoy-Vitorino, F. (2019). Human microbial ecology and the rising new medicine. Annals of Translational Medicine, 7(14), 342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golemis, E. A., Scheet, P., Beck, T. N., Scolnick, E. M., Hunter, D. J., Hawk, E., & Hopkins, N. (2018). Molecular mechanisms of the preventable causes of cancer in the United States. Genes and Development, 32(13–14), 868–902.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Govender, M., Choonara, Y. E., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Hakansson, A. P., Orihuela, C. J., & Bogaert, D. (2018). Bacterial-host interactions: Physiology and pathophysiology of respiratory infection. Physiological Reviews, 98(2), 781–811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haque, S. Z., & Haque, M. (2017). The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms–an appraisal. Clinical and Experimental Gastroenterology, 10, 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoare, A., Soto, C., Rojas-Celis, V., & Bravo, D. (2019). Chronic inflammation as a link between periodontitis and carcinogenesis. Mediators of Inflammation, 2019, 1.

    Article  CAS  Google Scholar 

  • Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117–1132.

    Article  CAS  Google Scholar 

  • Huang, C., & Shi, G. (2019). Smoking and microbiome in oral, airway, gut and some systemic diseases. Journal of Translational Medicine, 17(1), 225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jampilek, J., Kos, J., & Kralova, K. (2019). Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials, 9(2), 296.

    Article  PubMed Central  CAS  Google Scholar 

  • Javurek, A. B., Suresh, D., Spollen, W. G., Hart, M. L., Hansen, S. A., Ellersieck, M. R., et al. (2017). Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Scientific Reports, 7(1), 2822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, Z., Jacob, J. A., Li, J., Wu, X., Wei, G., Vimalanathan, A., et al. (2018). Influence of diet and dietary nanoparticles on gut dysbiosis. Microbial Pathogenesis, 118, 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Jones, S. E., & Versalovic, J. (2009). Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiology, 9(1), 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurj, A., Braicu, C., Pop, L. A., Tomuleasa, C., Gherman, C. D., & Berindan-Neagoe, I. (2017). The new era of nanotechnology, an alternative to change cancer treatment. Drug Design, Development and Therapy, 11, 2871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karavolos, M., & Holban, A. (2016). Nanosized drug delivery systems in gastrointestinal targeting: Interactions with microbiota. Pharmaceuticals, 9(4), 62.

    Article  PubMed Central  CAS  Google Scholar 

  • Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939.

    Article  CAS  Google Scholar 

  • Kho, Z. Y., & Lal, S. K. (2018). The human gut microbiome–a potential controller of wellness and disease. Frontiers in Microbiology, 9, 1835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khushnud, T., & Mousa, S. A. (2013). Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Molecular Biotechnology, 55(1), 78–86.

    Article  PubMed  CAS  Google Scholar 

  • Kilian, M., Chapple, I. L. C., Hannig, M., Marsh, P. D., Meuric, V., Pedersen, A. M. L., et al. (2016). The oral microbiome–an update for oral healthcare professionals. British Dental Journal, 221(10), 657.

    Article  PubMed  CAS  Google Scholar 

  • Kimelman, H., & Shemesh, M. (2019). Probiotic bifunctionality of Bacillus subtilis—rescuing lactic acid bacteria from desiccation and antagonizing pathogenic Staphylococcus aureus. Microorganisms, 7(10), 407.

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar Singh, A., Cabral, C., Kumar, R., Ganguly, R., Kumar Rana, H., Gupta, A., et al. (2019). Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients, 11(9), 2216.

    Article  PubMed Central  Google Scholar 

  • Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology, 16(12), 745–759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langdon, A., Crook, N., & Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Medicine, 8(1), 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebeaux, D., Ghigo, J. M., & Beloin, C. (2014). Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510–543.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lebeer, S., Vanderleyden, J., & De Keersmaecker, S. C. (2008). Genes and molecules of lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews, 72(4), 728–764.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee, N. Y., Hsueh, P. R., & Ko, W. C. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 10, 1153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, X., Yeh, Y. C., Giri, K., Mout, R., Landis, R. F., Prakash, Y. S., & Rotello, V. M. (2015). Control of nanoparticle penetration into biofilms through surface design. Chemical Communications, 51(2), 282–285.

    Article  PubMed  CAS  Google Scholar 

  • Lin, L., & Zhang, J. (2017). Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology, 18(1), 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, Q., Xing, C., Long, W., Wang, H. Y., Liu, Q., & Wang, R. F. (2019). Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. Journal of Neuroinflammation, 16(1), 53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macke, E., Tasiemski, A., Massol, F., Callens, M., & Decaestecker, E. (2017). Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos, 126(4), 508–531.

    Article  Google Scholar 

  • McFarland, L. V. (2014). Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: A systematic review. BMJ Open, 4(8), e005047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., et al. (2017). The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81(4), e00036–e00017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milinčić, D. D., Popović, D. A., Lević, S. M., Kostić, A. Ž., Tešić, Ž. L., Nedović, V. A., & Pešić, M. B. (2019). Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials, 9(11), 1629.

    Article  PubMed Central  CAS  Google Scholar 

  • Miquel, S., Lagrafeuille, R., Souweine, B., & Forestier, C. (2016). Anti-biofilm activity as a health issue. Frontiers in Microbiology, 7, 592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal, A. K., Kumar, S., & Banerjee, U. C. (2014). Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. Journal of Colloid and Interface Science, 431, 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 1255.

    Article  PubMed Central  CAS  Google Scholar 

  • Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463–6472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgillo, F., Dallio, M., Della Corte, C. M., Gravina, A. G., Viscardi, G., Loguercio, C., et al. (2018). Carcinogenesis as a result of multiple inflammatory and oxidative hits: A comprehensive review from tumor microenvironment to gut microbiota. Neoplasia (New York, NY), 20(7), 721.

    Article  CAS  Google Scholar 

  • Neuman, H., Forsythe, P., Uzan, A., Avni, O., & Koren, O. (2018). Antibiotics in early life: Dysbiosis and the damage done. FEMS Microbiology Reviews, 42(4), 489–499.

    PubMed  CAS  Google Scholar 

  • Nguyen, S., & Hiorth, M. (2015). Advanced drug delivery systems for local treatment of the oral cavity. Therapeutic Delivery, 6(5), 595–608.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, H. N., Romero Jovel, S., & Nguyen, T. H. K. (2017). Nanosized minicells generated by lactic acid bacteria for drug delivery. Journal of Nanomaterials, 2017.

    Google Scholar 

  • Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A., & Stahl, B. (2016). Probiotic approach to prevent antibiotic resistance. Annals of Medicine, 48(4), 246–255.

    Article  PubMed  CAS  Google Scholar 

  • Pagliari, D., Saviano, A., Newton, E. E., Serricchio, M. L., Dal Lago, A. A., Gasbarrini, A., & Cianci, R. (2018). Gut microbiota-immune system crosstalk and pancreatic disorders. Mediators of Inflammation, 2018, 7946431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parker, A., Fonseca, S., & Carding, S. R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11(2), 135–157.

    Google Scholar 

  • Peters, B. M., Jabra-Rizk, M. A., Graeme, A. O., Costerton, J. W., & Shirtliff, M. E. (2012). Polymicrobial interactions: Impact on pathogenesis and human disease. Clinical Microbiology Reviews, 25(1), 193–213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plichta, D. R., Graham, D. B., Subramanian, S., & Xavier, R. J. (2019). Therapeutic opportunities in inflammatory bowel disease: Mechanistic dissection of host-microbiome relationships. Cell, 178(5), 1041–1056.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poh, T. Y., Ali, N. A. T. B. M., Mac Aogáin, M., Kathawala, M. H., Setyawati, M. I., Ng, K. W., & Chotirmall, S. H. (2018). Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Particle and Fibre Toxicology, 15(1), 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Postler, T. S., & Ghosh, S. (2017). Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metabolism, 26(1), 110–130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu, K., Durham, P. G., & Anselmo, A. C. (2018). Inorganic nanoparticles and the microbiome. Nano Research, 11(10), 4936–4954.

    Article  CAS  Google Scholar 

  • Rauta, P. R., Mohanta, Y. K., & Nayak, D. (Eds.). (2019). Nanotechnology in biology and medicine: Research advancements and future perspectives. CRC Press. Boca Raton, Florida

    Google Scholar 

  • Relman, D. A., & Lipsitch, M. (2018). Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proceedings of the National Academy of Sciences, 115(51), 12902–12910.

    Article  CAS  Google Scholar 

  • Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), 14.

    Article  PubMed Central  CAS  Google Scholar 

  • Rosenberg, E., & Zilber-Rosenberg, I. (2018). The hologenome concept of evolution after 10 years. Microbiome, 6(1), 78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, E., Sharon, G., Atad, I., & Zilber-Rosenberg, I. (2010). The evolution of animals and plants via symbiosis with microorganisms. Environmental Microbiology Reports, 2(4), 500–506.

    Article  PubMed  Google Scholar 

  • Rosenfeld, C. S. (2017). Gut dysbiosis in animals due to environmental chemical exposures. Frontiers in Cellular and Infection Microbiology, 7, 396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salas-Jara, M., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: New challenges for the development of probiotics. Microorganisms, 4(3), 35.

    Article  PubMed Central  CAS  Google Scholar 

  • Salazar, N., Gueimonde, M., de los Reyes-Gavilan, C. G., & Ruas-Madiedo, P. (2016). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Critical Reviews in Food Science and Nutrition, 56(9), 1440–1453.

    Article  PubMed  CAS  Google Scholar 

  • Saus, E., Iraola-Guzmán, S., Willis, J. R., Brunet-Vega, A., & Gabaldón, T. (2019). Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Molecular Aspects of Medicine, 69, 93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selber-Hnatiw, S., Rukundo, B., Ahmadi, M., Akoubi, H., Al-Bizri, H., Aliu, A. F., et al. (2017). Human gut microbiota: Toward an ecology of disease. Frontiers in Microbiology, 8, 1265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemer, S., Hahlbrock, A., Vallet, C., McClements, D. J., Balszuweit, J., Voskuhl, J., et al. (2018). Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: A simulated gastrointestinal study. NPJ Science of Food, 2(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon, J. C., Marchesi, J. R., Mougel, C., & Selosse, M. A. (2019). Host-microbiota interactions: From holobiont theory to analysis. Microbiome, 7(1), 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, Y., Ahmad, J., Musarrat, J., Ehtesham, N. Z., & Hasnain, S. E. (2013). Emerging importance of holobionts in evolution and in probiotics. Gut Pathogens, 5(1), 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sitaraman, R. (2018). Prokaryotic horizontal gene transfer within the human holobiont: Ecological-evolutionary inferences, implications and possibilities. Microbiome, 6(1), 163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siwek, M., Slawinska, A., Stadnicka, K., Bogucka, J., Dunislawska, A., & Bednarczyk, M. (2018). Prebiotics and synbiotics–in ovo delivery for improved lifespan condition in chicken. BMC Veterinary Research, 14(1), 402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skillings, D. (2016). Holobionts and the ecology of organisms: Multi-species communities or integrated individuals? Biology and Philosophy, 31(6), 875–892.

    Article  Google Scholar 

  • Stanton, M. M., Park, B. W., Vilela, D., Bente, K., Faivre, D., Sitti, M., & Sánchez, S. (2017). Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano, 11(10), 9968–9978.

    Article  PubMed  CAS  Google Scholar 

  • Sterlin, D., Fadlallah, J., Slack, E., & Gorochov, G. (2019). The antibody/microbiota interface in health and disease. Mucosal Immunology, 13(1), 3–11.

    Google Scholar 

  • Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591.

    Article  PubMed Central  CAS  Google Scholar 

  • Thomas, S., Izard, J., Walsh, E., Batich, K., Chongsathidkiet, P., Clarke, G., et al. (2017). The host microbiome regulates and maintains human health: A primer and perspective for non-microbiologists. Cancer Research, 77(8), 1783–1812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823–1836.

    Article  PubMed Central  CAS  Google Scholar 

  • Toribio-Mateas, M. (2018). Harnessing the power of microbiome assessment tools as part of neuroprotective nutrition and lifestyle medicine interventions. Microorganisms, 6(2), 35.

    Article  PubMed Central  CAS  Google Scholar 

  • Tuteja, S., & Ferguson, J. F. (2019). Gut microbiome and response to cardiovascular drugs. Circulation: Genomic and Precision Medicine, 12(9), 421–429.

    CAS  Google Scholar 

  • Van Giau, V., Lee, H., An, S. S. A., & Hulme, J. (2019). Recent advances in the treatment of C. difficile using biotherapeutic agents. Infection and Drug Resistance, 12, 1597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., & Drider, D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology, 10, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegh, C. A., Geerlings, S. Y., Knol, J., Roeselers, G., & Belzer, C. (2019). Postbiotics and their potential applications in early life nutrition and beyond. International Journal of Molecular Sciences, 20(19), 4673.

    Article  PubMed Central  Google Scholar 

  • Westmeier, D., Hahlbrock, A., Reinhardt, C., Fröhlich-Nowoisky, J., Wessler, S., Vallet, C., et al. (2018). Nanomaterial–microbe cross-talk: Physicochemical principles and (patho) biological consequences. Chemical Society Reviews, 47(14), 5312–5337.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Liu, M., Cao, J., Li, X., Fan, D., Xia, Y., et al. (2019). The dynamic interplay between the gut microbiota and autoimmune diseases. Journal of Immunology Research, 2019, 1.

    Google Scholar 

  • Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences, 20(14), 3423.

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang, Z., Tang, H., Chen, P., Xie, H., & Tao, Y. (2019). Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduction and Targeted Therapy, 4(1), 1–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Sebastian Ritoré for his collaboration and invaluable support during the writing of this chapter, as well as the graphics contained in this book.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, J. (2020). Nanotechnology Beyond the Antibiosis. In: Preclinical Evaluation of Antimicrobial Nanodrugs. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43855-5_8

Download citation

Publish with us

Policies and ethics