Skip to main content

Application of Repetitive Transcranial Magnetic Stimulation in Tourette Syndrome

  • Chapter
  • First Online:
Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences
  • 750 Accesses

Abstract

Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder with a lifetime prevalence of 0.8% and a higher incidence in males. It is characterized by chronic motor and vocal tics that are often preceded by premonitory urges. Although tic symptoms in the majority of children with TS improve during adolescence, adults with persistent illness can experience chronic and severe tics. Behavioral and pharmacological treatments for TS exist. However, approximately one-third of individuals with TS do not benefit from first-line treatments, and several of the most effective medications have significant side effects. Although the etiology of TS is unknown, exploring tic disorders has led to a deeper understanding of neural pathways and circuits in the brain that subserve sensory and motor function, linking the frontal lobes, the striatum, and the thalamus. The emerging knowledge concerning the underlying circuitry of TS has been used to guide the design of focal brain interventions, such as noninvasive brain stimulation, as novel putative treatment strategies. Here is a report about the promising, although preliminary, results of repetitive transcranial magnetic stimulation (rTMS) in the treatment of TS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leckman JF. Tourette syndrome. Lancet. 2002;360:1577–86.

    PubMed  Google Scholar 

  2. Leckman JF, Vaccarino FM, Kalanithi PS, Rothenberger A. Annotation: Tourette syndrome: a relentless drumbeat driven by misguided brain oscillations. J Child Psychol Psychiatry. 2006;47:537–50.

    PubMed  Google Scholar 

  3. Kalanithi PS, Zheng W, DiFiglia M, DiFiglia M, Grantz H, Saper CB, et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A. 2005;102:13307–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Albin RL, Mink JW. Recent advances in Tourette syndrome research. Trends Neurosci. 2006;29:175–82.

    CAS  PubMed  Google Scholar 

  5. Mell LK, Davis RL, Owens D. Association between streptococcal infection and obsessive-compulsive disorder, Tourette’s syndrome, and tic disorder. Pediatrics. 2005;116:56–60.

    PubMed  Google Scholar 

  6. Swedo SE, Leonard HL, Garvey M, Mittleman B, Allen AJ, Perlmutter S, et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry. 1998;155:264–71.

    CAS  PubMed  Google Scholar 

  7. Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Mutations in SLITRK1 are associated with Tourette syndrome. Science. 2005;310:317–20.

    CAS  PubMed  Google Scholar 

  8. Lin H, Katsovich L, Ghebremichael M, Findley DB, Grantz H, Lombroso PJ, et al. Psychosocial stress predicts future symptom severities in children and adolescents with Tourette syndrome and/or obsessive-compulsive disorder. J Child Psychol Psychiatry. 2007;48:157–66.

    PubMed  PubMed Central  Google Scholar 

  9. Davis KK, Davis JS, Dowler L. In motion, out of place: the public space(s) of Tourette syndrome. Soc Sci Med. 2004;59:103–12.

    PubMed  Google Scholar 

  10. Elstner K, Selai CE, Trimble MR, Robertson MM. Quality of Life (QOL) of patients with Gilles de la Tourette’s syndrome. Acta Psychiatr Scand. 2001;103:52–9.

    CAS  PubMed  Google Scholar 

  11. Leckman JF, Bloch MH, Sukhodolsky DG. Phenomenology of tics and sensory urges: the self under siege. In: Martino D, Leckman JF, editors. Tourette syndrome. New York: Oxford University Press; 2013. p. 3–25.

    Google Scholar 

  12. Bloch MH, Peterson BS, Scahill L, Otka J, Katsovich L, Zhang H, et al. Adulthood outcome of tic and obsessive-compulsive symptom severity in children with Tourette syndrome. Arch Pediatr Adolesc Med. 2006;160:65–9.

    PubMed  PubMed Central  Google Scholar 

  13. McGuire JF, Piacentini J, Brennan EA, Lewin AB, Murphy TK, Small BJ, et al. A meta-analysis of behavior therapy for Tourette syndrome. J Psychiatr Res. 2014;50:106–12.

    PubMed  Google Scholar 

  14. Roessner V, Rothenberger A, Rickards H, Ludolph AG, Rizzo R, Skov L, et al. European clinical guidelines for Tourette syndrome and other tic disorders. Eur Child Adolesc Psychiatry. 2011;20:153–4.

    PubMed  PubMed Central  Google Scholar 

  15. Robertson MM, Stern JS. Gilles de la Tourette syndrome: symptomatic treatment based on evidence. Eur Child Adolesc Psychiatry. 2000;9:60–75.

    Google Scholar 

  16. Roessner V, Rothenberger A. Pharmacological treatment of tics. In: Martino D, Leckman JF, editors. Tourette syndrome. New York: Oxford University Press; 2013. p. 454–62.

    Google Scholar 

  17. Groenewegen HJ, van den Heuvel OA, Cath DC, Voorn P, Veltman DJ. Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette’s syndrome? A neuronal circuit approach. Brain Dev. 2003;25(Suppl 1):S3–S14.

    PubMed  Google Scholar 

  18. Baldermann JC, Schüller T, Huys D, Becker I, Timmermann L, Jessen F, et al. Deep brain stimulation for Tourette syndrome: a systematic review and meta-analysis. Brain Stimul. 2016;9:296–304. https://doi.org/10.1016/j.brs.2015.11.005.

    Article  PubMed  Google Scholar 

  19. Coulombe MA, Elkaim LM, Alotaibi NM, Gorman DA, Weil AG, Fallah A, et al. Deep brain stimulation for Gilles de la Tourette syndrome in children and youth: a meta-analysis with individual participant data. J Neurosurg Pediatr. 2018;23:236–46. https://doi.org/10.3171/2018.7.PEDS18300.

    Article  PubMed  Google Scholar 

  20. Martinez-Ramirez D, Jimenez-Shahed J, Leckman JF, Porta M, Servello D, Meng FG, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: the international Tourette syndrome deep brain stimulation public database and registry. JAMA Neurol. 2018;75:353–9.

    PubMed  PubMed Central  Google Scholar 

  21. Welter ML, Houeto JL, Thobois S, Bataille B, Guenot M, Worbe Y, et al. STIC study group. Anterior pallidal deep brain stimulation for Tourette’s syndrome: a randomised, double-blind, controlled trial. Lancet Neurol. 2017;16:610–19.

    Google Scholar 

  22. Johnson KA, Fletcher PT, Servello D, Bona A, Porta M, Ostrem JL, et al. Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. J Neurol Neurosurg Psychiatry. 2019;90(10):1078–90. pii: jnnp-2019-320379. https://doi.org/10.1136/jnnp-2019-320379.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kakusa B, Saluja S, Tate WJ, Espil FM, Halpern CH, Williams NR. Robust clinical benefit of multi-target deep brain stimulation for treatment of Gilles de la Tourette syndrome and its comorbidities. Brain Stimul. 2019;12:816–8.

    PubMed  Google Scholar 

  24. Buhmann C, Huckhagel T, Engel K, Gulberti A, Hidding U, Poetter-Nerger M, et al. Adverse events in deep brain stimulation: a retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS One. 2017;12:e0178984. https://doi.org/10.1371/journal.pone.0178984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Servello D, Sassi M, Gaeta M, Ricci C, Porta M. Tourette syndrome bears a higher rate of inflammatory complications at the implanted hardware in deep brain stimulation. Acta Neurochir (Wien). 2011;153:629–32.

    Google Scholar 

  26. Orth M. Transcranial magnetic stimulation in Gilles de la Tourette syndrome. J Psychosom Res. 2009;67:591–8.

    PubMed  Google Scholar 

  27. Chae JH, Nahas Z, Wassermann E, Li X, Sethuraman G, Gilbert D, et al. A pilot safety study of repetitive transcranial magnetic stimulation in Tourette’s syndrome. Cogn Behav Neurol. 2004;17:109–17.

    PubMed  Google Scholar 

  28. Munchau A, Bloem BR, Thilo KV, Trimble MR, Rothwell JC, Robertson MM. Repetitive transcranial magnetic stimulation for Tourette syndrome. Neurology. 2002;59:1789–91.

    CAS  PubMed  Google Scholar 

  29. Orth M, Kirby R, Richardson MP, Rothwell JC, Trimble MR, Robertson MM, et al. Subthreshold rTMS over pre-motor cortex has no effect on tics in patients with Gilles de la Tourette syndrome. Clin Neurophysiol. 2005;116:764–8.

    CAS  PubMed  Google Scholar 

  30. Bloch Y, Arad S, Levkovitz Y. Deep TMS add-on treatment for intractable Tourette syndrome: a feasibility study. World J Biol Psychiatry. 2016;17:557–61. https://doi.org/10.3109/15622975.2014.964767.

    Article  PubMed  Google Scholar 

  31. Kwon HJ, Lim WS, Lim MH, Lee SJ, Hyun JK, Chae JH, et al. 1-Hz low frequency repetitive transcranial magnetic stimulation in children with Tourette’s syndrome. Neurosci Lett. 2011;492:1–4.

    CAS  PubMed  Google Scholar 

  32. Le K, Liu L, Sun MHL, Xiao N. Transcranial magnetic stimulation at 1 Hertz improves clinical symptoms in children with Tourette syndrome for at least 6 months. J Clin Neurosci. 2013;20:257–62.

    PubMed  Google Scholar 

  33. Mantovani A, Lisanby SH, Pieraccini F, Ulivelli M, Castrogiovanni P, Rossi S. Repetitive transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder and Tourette’s syndrome. Int J Neuropsychopharmacol. 2006;9:95–100.

    PubMed  Google Scholar 

  34. Mantovani A, Leckman JF, Grantz H, King RA, Sporn AL, Lisanby SH. Repetitive transcranial magnetic stimulation of the supplementary motor area in the treatment of Tourette syndrome: report of two cases. Clin Neurophysiol. 2007;118:2314–5.

    PubMed  Google Scholar 

  35. Salatino A, Momo E, Nobili M, Berti A, Ricci R. Awareness of symptoms amelioration following low-frequency repetitive transcranial magnetic stimulation in a patient with Tourette syndrome and comorbid obsessive-compulsive disorder. Brain Stimul. 2014;7:341–3.

    PubMed  Google Scholar 

  36. Alexander G, Crutcher M, DeLong M. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal”, and “limbic” functions. Prog Brain Res. 1990;85:119–46.

    CAS  PubMed  Google Scholar 

  37. Graybiel AM. The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol. 2005;15:638–44.

    CAS  PubMed  Google Scholar 

  38. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    PubMed  Google Scholar 

  39. Eccles JC. The initiation of voluntary movements by the supplementary motor area. Arch Psychiatr Nervenkr. 1982;231:423–41.

    CAS  PubMed  Google Scholar 

  40. Wiesendanger M. Eccles’ perspective of the forebrain, its role in skilled movements, and the mind-brain problem. Prog Neurobiol. 2006;78:304–21.

    PubMed  Google Scholar 

  41. Cunnington R, Windischberger C, Moser E. Premovement activity of the pre-supplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Hum Mov Sci. 2005;24:644–56.

    PubMed  Google Scholar 

  42. Lerner A, Bagic A, Hanakawa T, Boudreau EA, Pagan F, Mari Z, et al. Involvement of insula and cingulate cortices in control and suppression of natural urges. Cereb Cortex. 2009;19:218–23.

    Google Scholar 

  43. Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS, et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci. 1991;11:3656–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bohlhalter S, Goldfine A, Matteson S, Garraux G, Hanakawa T, Kansaku K, et al. Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain. 2006;129:2029–37.

    CAS  PubMed  Google Scholar 

  45. Braun AR, Stoetter B, Randolph C, Hsiao JK, Vladar K, Gernert J, et al. The functional neuroanatomy of Tourette’s syndrome: an FDG-PET study. Regional changes in cerebral glucose metabolism differentiating patients and controls. Neuropychopharmacology. 1993;9:277–91.

    CAS  Google Scholar 

  46. Chase TN, Geoffrey V, Gillespie M, Burrows GH. Structural and functional studies of Gilles de la Tourette syndrome. Rev Neurol. 1986;142:851–5.

    CAS  PubMed  Google Scholar 

  47. Eidelberg D, Moeller JR, Antonini A, Kazumata K, Dhawan V, Budman C, et al. The metabolic anatomy of Tourette’s syndrome. Neurology. 1997;48:927–34.

    CAS  PubMed  Google Scholar 

  48. Stern E, Silbersweig DA, Chee KY, Holmes A, Robertson MM, Trimble M, et al. A functional neuroanatomy of tics in Tourette Syndrome. Arch Gen Psychiatry. 2000;57:741–8.

    CAS  PubMed  Google Scholar 

  49. Hampson M, Tokoglu F, King RA, Constable RT, Leckman JF. Brain areas coactivating with motor cortex during chronic motor tics and intentional movements. Biol Psychiatry. 2009;65:594–9. https://doi.org/10.1016/j.biopsych.2008.11.012.

  50. Landeros-Weisenberger A, Mantovani A, Motlagh MG, de Alvarenga PG, Katsovich L, Leckman JF, et al. Randomized sham controlled double-blind trial of repetitive transcranial magnetic stimulation for adults with severe Tourette syndrome. Brain Stimul. 2015;8:574–81. https://doi.org/10.1016/j.brs.2014.11.015.

    Article  PubMed  Google Scholar 

  51. Rossi S, Ferro M, Cincotta M, Ulivelli M, Bartalini S, Miniussi C, et al. A real electro-magnetic placebo device for sham transcranial magnetic stimulation. Clin Neurophysiol. 2007;118:709–16.

    PubMed  Google Scholar 

  52. Levine J, Schooler NR. SAFETEE: a technique for the systematic assessment of side effects in clinical trials. Psychopharmacol Bull. 1986;22:343–81.

    CAS  PubMed  Google Scholar 

  53. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–16.

    PubMed  Google Scholar 

  54. Singh S, Kumar S, Kumar N, Verma R. Low-frequency repetitive transcranial magnetic stimulation for treatment of Tourette syndrome: a naturalistic study with 3 months of follow-up. Indian J Psychol Med. 2018;40:482–6.

    PubMed  PubMed Central  Google Scholar 

  55. Hawken ER, Dilkov D, Kaludiev E, Simek S, Zhang F, Milev R. Transcranial magnetic stimulation of the supplementary motor area in the treatment of obsessive-compulsive disorder: a multi-site study. Int J Mol Sci. 2016;17:420. https://doi.org/10.3390/ijms17030420.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mantovani A, Simpson HB, Fallon BA, Rossi S, Lisanby SH. Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive-compulsive disorder. Int J Neuropsychopharmacol. 2010;13:217–27. https://doi.org/10.1017/S1461145709990435.

    Article  PubMed  Google Scholar 

  57. Mantovani A, Westin G, Hirsch J, Lisanby SH. Functional magnetic resonance imaging guided transcranial magnetic stimulation in obsessive-compulsive disorder. Biol Psychiatry. 2010;67:e39–40. https://doi.org/10.1016/j.biopsych.2009.08.009.

    Article  PubMed  Google Scholar 

  58. Kumar N, Chadda RK. Augmentation effect of repetitive transcranial magnetic stimulation over the supplementary motor cortex in treatment refractory patients with obsessive compulsive disorder. Indian J Psychiatry. 2011;53:340–2. https://doi.org/10.4103/0019-5545.91909.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee YJ, Koo BH, Seo WS, Kim HG, Kim JY, Cheon EJ. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: an open-label pilot study. J Clin Neurosci. 2017;44:264–8. https://doi.org/10.1016/j.jocn.2017.06.057.

    Article  PubMed  Google Scholar 

  60. Pallanti S, Marras A, Salerno L, Makris N, Hollander E. Better than treated as usual: transcranial magnetic stimulation augmentation in selective serotonin reuptake inhibitor-refractory obsessive-compulsive disorder, mini-review and pilot open-label trial. J Psychopharmacol. 2016;30:568–78. https://doi.org/10.1177/0269881116628427.

    Article  CAS  PubMed  Google Scholar 

  61. Rehn S, Eslick GD, Brakoulias V. A meta-analysis of the effectiveness of different cortical targets used in repetitive transcranial magnetic stimulation (rTMS) for the treatment of obsessive-compulsive disorder (OCD). Psychiatry Q. 2018;89:645–65. https://doi.org/10.1007/s11126-018-9566-7.

    Article  Google Scholar 

  62. Mantovani A, Rossi S, Bassi BD, Simpson HB, Fallon BA, Lisanby SH. Modulation of motor cortex excitability in obsessive-compulsive disorder: an exploratory study on the relations of neurophysiology measures with clinical outcome. Psychiatry Res. 2013;210:1026–32. https://doi.org/10.1016/j.psychres.2013.08.054.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rossi S, Bartalini S, Ulivelli M, Mantovani A, Di Muro A, Goracci A. Hypofunctioning of sensory gating mechanisms in patients with obsessive-compulsive disorder. Biol Psychiatry. 2005;57:16–20.

    PubMed  Google Scholar 

  64. Corbit VL, Manning EE, Gittis AH, Ahmari SE. Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J Neurosci. 2019;39:2965–75. https://doi.org/10.1523/JNEUROSCI.1728-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirschtritt ME, Darrow SM, Illmann C, Osiecki L, Grados M, Sandor P, et al. Genetic and phenotypic overlap of specific obsessive-compulsive and attention-deficit/hyperactive subtypes with Tourette syndrome. Psychol Med. 2018;48:279–93. https://doi.org/10.1017/S0033291717001672.

    Article  CAS  PubMed  Google Scholar 

  66. Gaze C, Kepley HO, Walkup JT. Co-occurring psychiatric disorders in children and adolescents with Tourette syndrome. J Child Neurol. 2006;21:657–64.

    PubMed  Google Scholar 

  67. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res. 2002;43:111–7.

    PubMed  Google Scholar 

  68. Bunse T, Wobrock T, Strube W, Padberg F, Palm U, Falkai P, et al. Motor cortical excitability assessed by transcranial magnetic stimulation in psychiatric disorders: a systematic review. Brain Stimul. 2014;7:158–69.

    PubMed  Google Scholar 

  69. Boroojerdi B, Prager A, Muelibacher W, Cohen LG. Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology. 2000;11:1529–31.

    Google Scholar 

  70. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–403.

    CAS  PubMed  Google Scholar 

  71. Speer AM, Kimbrell TA, Wassermann EM, Repella J, Willis MW, Herscovitch P, et al. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry. 2000;48:133–41.

    Google Scholar 

  72. Speer AM, Willis MW, Herscovitch P, Daube-Witherspoon M, Shelton JR, Benson BE, et al. Intensity-dependent regional cerebral blood flow during 1-Hz repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers studied with H215O positron emission tomography: II. Effects of prefrontal cortex rTMS. Biol Psychiatry. 2003;54:826–32.

    PubMed  Google Scholar 

  73. Wassermann EM, Wedegaertner FR, Ziemann UI, George MS, Chen R. Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Neurosci Lett. 1998;250:141–4.

    CAS  PubMed  Google Scholar 

  74. Rossi S, Pasqualetti P, Rossini PM, Feige B, Ulivelli M, Glocker FX, et al. Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb Cortex. 2000;10:802–8.

    CAS  PubMed  Google Scholar 

  75. Artola A, Brocher S, Singer W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature. 1990;347:69–72.

    CAS  PubMed  Google Scholar 

  76. Kirkwood A, Dudek S, Gold JT, Aizenman CD, Bear MF. Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science. 1993;260:1518–21.

    CAS  PubMed  Google Scholar 

  77. Stanton PK, Sejnowsky TJ. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989;339:215–8.

    CAS  PubMed  Google Scholar 

  78. Hoffman RE, Cavus I. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatry. 2002;159:1093–102.

    PubMed  Google Scholar 

  79. Bliss TVP, Gardner-Medwin AR. Long-lasting potentiation of the synaptic transimission in the detate area of the unanesthatized rabbit following stimulation of the perforant path. J Physiol. 1973;232:357–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Scahill L, Leckman JF, Schultz RT, Katsovich L, Peterson BS. A placebo-controlled trial of risperidone in Tourette syndrome. Neurology. 2003;60:1130–5.

    CAS  PubMed  Google Scholar 

  81. Hsu CW, Wang LJ, Lin PY. Efficacy of repetitive transcranial magnetic stimulation for Tourette syndrome: a systematic review and meta-analysis. Brain Stimul. 2018;11:1110–8.

    PubMed  Google Scholar 

  82. Wu SW, Maloney T, Gilbert DL, Dixon SG, Horn PS, Huddleston DA, et al. Functional MRI-navigated repetitive transcranial magnetic stimulation over supplementary motor area in chronic tic disorders. Brain Stimul. 2014;7:212–8.

    PubMed  Google Scholar 

  83. Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, Ranieri F, et al. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol. 2011;105:2150–6. https://doi.org/10.1152/jn.00781.2010.

    Article  PubMed  Google Scholar 

  84. Obeso I, Cho SS, Antonelli F, Houle S, Jahanshahi M, Ko JH, et al. Stimulation of the pre-SMA influences cerebral blood flow in frontal areas involved with inhibitory control of action. Brain Stimul. 2013;6:769–76.

    CAS  PubMed  Google Scholar 

  85. Mantovani A, personal communication. Transcranial magnetic stimulation in obsessive-compulsive disorder: clinical, neurophysiolOGY and neuroimaging outcomes. In: Italian Society of Psychiatry National Meeting, June 23-26, 2019.

    Google Scholar 

  86. Dos Santos-Ribeiro S, de Salles Andrade JB, Quintas JN, Quintas JN, Baptista KB, Moreira-de-Oliveira ME, et al. A systematic review of the utility of electroconvulsive therapy in broadly defined obsessive-compulsive-related disorders. Prim Care Companion CNS Disord. 2018;18:20.

    Google Scholar 

  87. Zhang C, Deng Z, Pan Y, Zhang J, Zeljic K, Jin H, et al. Pallidal deep brain stimulation combined with capsulotomy for Tourette’s syndrome with psychiatric comorbidity. J Neurosurg. 2019;4:1–9. https://doi.org/10.3171/2018.8.JNS181339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mantovani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mantovani, A. (2020). Application of Repetitive Transcranial Magnetic Stimulation in Tourette Syndrome. In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43356-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43356-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43355-0

  • Online ISBN: 978-3-030-43356-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics