Skip to main content

The Effect of Discretization on Parameter Identification. Application to Patient-Specific Simulations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 36))

Abstract

Identifying the elastic parameters of a finite element model from a dynamically acquired set of observations is a fundamental challenge in many data-driven medical applications going from soft surgical robotics to image-guided per-operative simulations. While various strategies exist to tackle the parameter-identification inverse problem (Aster et al. 2013), the effect of sub-optimal discretization, as often required in real-time applications, is largely overlooked. Indeed, the need to tune the parameter values in order to account for discretization-induced stiffening in specific models is reported in different works (e.g. Chen et al. 2015; Mira et al. 2018). However, to the best of our knowledge, no systematic study of this phenomenon exists to date, nor has any strategy to select optimal effective values been developed. Our work addresses the issue of parameter identification in coarsened meshes with special attention to the dynamical nature of the identification. We focus on the estimation of Young’s moduli in simplified systems and show that the estimated stiffnesses are underestimated in a systematic manner when reducing the number of degrees of freedom. We also show that the effective stiffness of a given coarse mesh, when associated with an undersampled mesh discretization, is not constant but strongly depends on the prescribed deformations. These results show that the estimated parameters should not be considered as the true parameter value of the organ or tissue but instead are model-dependent values. We argue that Bayesian methods present a clear advantage w.r.t. classical minimization methods by their ability to efficiently adapt the local parameter values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anna, M., Carton, A.-K., Muller, S., Payan, Y.: Breast biomechanical modeling for compression optimization in digital breast tomosynthesis. In: Gefen, A., Weihs, D., (eds.) Computer Methods in Biomechanics and Biomedical Engineering. Lecture Notes in Bioengineering, pp. 29–35. Springer (2018)

    Google Scholar 

  • Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Academic Press, Cambridge (2013)

    MATH  Google Scholar 

  • Avril, S., Evans, S.: Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics, vol. 573. Springer, Heidelberg (2017)

    Book  Google Scholar 

  • Bialecki, R.A., Kassab, A.J., Fic, A.: Proper orthogonal decomposition and modal analysis for acceleration of transient fem thermal analysis. Int. J. Numer. Methods Eng. 62, 774–797 (2005)

    Article  Google Scholar 

  • Chen, D., Levin, D.I.W., Sueda, S., Matusik, W.: Data-driven finite elements for geometry and material design. ACM Trans. Graph. 34(4), 74:1–74:10 (2015)

    Google Scholar 

  • Collins, J.A., Weis, J.A., Heiselman, J.S., Clements, L.W., Simpson, A.L., Jarnagin, W.R., Miga, M.I., et al.: Improving registration robustness for image-guided liver surgery in a novel human-to-phantom data framework. IEEE Trans. Med. Imaging 36(7), 1502–1510 (2017)

    Article  Google Scholar 

  • Han, L., Hipwell, J.H., Tanner, C., Taylor, Z., Mertzanidou, T., Cardoso, J., Ourselin, S., Hawkes, D.J.: Development of patient-specific biomechanical models for predicting large breast deformation. Phys. Med. Biol. 57(2), 455–472 (2011)

    Article  Google Scholar 

  • Haouchine, N., Cotin, S., Peterlik, I., Dequidt, J., Lopez, M.S., Kerrien, E., Berger, M.-O.: Impact of soft tissue heterogeneity on augmented reality for liver surgery. IEEE Trans. Visual. Comput. Graph. 21(5), 584–597 (2015)

    Article  Google Scholar 

  • Heiselman, J.S., Clements, L.W., Collins, J.A., Weis, J.A., Simpson, A.L., Geevarghese, S.K., Kingham, T.P., Jarnagin, W.R., Miga, M.I.: Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery. J. Med. Imaging 5(2), 021203 (2017)

    Article  Google Scholar 

  • Marchesseau, S., Heimann, T., Chatelin, S., Willinger, R., Delingette, H.: Multiplicative Jacobian energy decomposition method for fast porous visco-hyperelastic soft tissue model. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 235–242. Springer (2010)

    Google Scholar 

  • Moireau, P., Chapelle, D.: Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. Control Optim. Calc. Var. 17(2), 380–405 (2011)

    Article  MathSciNet  Google Scholar 

  • Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., Chinesta, F.: Real-time simulation of biological soft tissues: a PGD approach. Int. J. Numer. Methods Biomed. Eng. 29(5), 586–600 (2013)

    Article  MathSciNet  Google Scholar 

  • Ophir, J., Céspedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13(2), 111–134 (1991)

    Article  Google Scholar 

  • Peters, T., Cleary, K.: Image-Guided Interventions: Technology and Applications. Springer, Heidelberg (2008)

    Book  Google Scholar 

  • Rifai, K., Cornberg, J., Mederacke, I., Bahr, M.J., Wedemeyer, H., Malinski, P., Bantel, H., Boozari, B., Potthoff, A., Manns, M.P., et al.: Clinical feasibility of liver elastography by acoustic radiation force impulse imaging (ARFI). Dig. Liver Dis. 43(6), 491–497 (2011)

    Article  Google Scholar 

  • Suwelack, S., Röhl, S., Bodenstedt, S., Reichard, D., Dillmann, R., dos Santos, T., Maier-Hein, L., Wagner, M., Wünscher, J., Kenngott, H., et al.: Physics-based shape matching for intraoperative image guidance. Med. phys. 41(11), 111901 (2014)

    Article  Google Scholar 

  • Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8(1), 77–84 (2009)

    Article  Google Scholar 

  • Zhang, J., Zhong, Y., Gu, C.: Deformable models for surgical simulation: a survey. IEEE Rev. Biomed. Eng. 11, 143–164 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nava Schulmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schulmann, N., Cotin, S., Peterlik, I. (2020). The Effect of Discretization on Parameter Identification. Application to Patient-Specific Simulations. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43195-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43194-5

  • Online ISBN: 978-3-030-43195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics